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Abstract

Top income inequality in the United States has increased considerably within
many occupations. This phenomenon has led to a search for a common explana-
tion. We instead develop a theory where increases in income inequality originat-
ing within a few occupations can “spill over” through consumption into others.
We show theoretically that such spillovers occur when an occupation provides
non-divisible services of heterogeneous quality to consumers. Examining local
income inequality across U.S. regions, we find evidence that such spillovers exist
for physicians, dentists, other medical occupations, and real estate agents. Esti-
mated spillovers for other occupations are consistent with the predictions of our
theory. Calibrating our model, we show that spillovers amplify a given shock
to top income inequality by at least 16%. Spillovers dampen the increase in
consumers’ welfare inequality compared with the change in income inequality.
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1 Introduction
The increase in top earnings since the 1980s has been accompanied by growing in-

equality within the top of the distribution, both in aggregate and within occupa-

tions (Bakija, Cole, and Heim, 2012). At first glance, this pattern suggests that

any explanation for rising inequality—whether globalization, technology, deregula-

tion, or changes to the tax structure—would have to apply to occupations as diverse

as bankers, doctors, and CEOs (Kaplan and Rauh, 2013). We argue instead that

an increase in income inequality originating within some occupations can spill over

into others, driving broader changes in income inequality. Our prime example is

physicians, who comprise 13% of the top one percent of wage earners.

Our first contribution is theoretical. We characterize conditions under which an

increase in one group’s top income inequality increases top income inequality for

service providers. This occurs when the services provided are heterogeneous in quality

and consumers cannot perfectly substitute quality with quantity. These spillovers are

geographically local when the services are non-tradable.

We examine our model’s predictions in U.S. labor market data. Using a shift-

share strategy, we show that a region’s top income inequality spills over into top

income inequality among physicians, dentists, other medical occupations, and real

estate agents. The effect is large, with standardized coefficients of 1.1 to 1.5. We do

not observe such spillovers for occupations that do not meet the model’s requirements

(such as engineers and managers). Using a broader set of occupations and charac-

teristics of occupations, we show that the spillover patterns are consistent with the

model’s predictions.

Our analysis begins in Section 2 by documenting that the rise in top income

inequality is driven primarily by growing income inequality within occupations. We

decompose wage income changes from 1980 to 2012 and find that three-quarters of

the rise in the 99th-to-90th-percentile income ratio is within-occupation.

In Section 3, we develop a theory under which income inequality can spill over

from one occupation to another. In our model, widget makers with heterogeneous

incomes buy services from doctors who have heterogeneous abilities and thus provide

medical services of heterogeneous quality. Consumption of medical services is non-

divisible: Each widget maker needs to consume one unit of one doctor’s services. In

addition, production is not scalable: Each doctor can only serve a fixed number of

widget makers. This gives rise to a positive assortative matching mechanism. When
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both groups’ ability distributions have Pareto tails, doctors’ income distribution also

has a Pareto tail. An (exogenous) increase in income inequality among the widget

makers increases relative demand for the services of the highest-ability doctors and

increases top income inequality among doctors. Interestingly, increasing inequality

of doctors’ ability may actually reduce doctors’ top income inequality. Our results

generalize to the case when doctors have a finite positive supply elasticity, and to

the case where quantity and quality of medical service are partly (but not perfectly)

substitutable. In contrast, with perfect substitution between quality and quantity,

any change in widget makers’ income distribution only affects the price per unit of

quality-adjusted medical service with no consequence for doctors’ inequality.

Our baseline model deliberately focuses on local consumption spillovers by con-

sidering a single economy and it abstracts from occupational mobility at the top of

the income distribution. Our results are robust to allowing for both occupational and

geographical mobility of doctors; in both cases, increasing local income inequality of

widget makers increases local income inequality for doctors. In contrast, when we

allow for trade in medical services, spillovers occur at the national level so that local

top income inequality of doctors is independent of local top income inequality.

Section 4 introduces our empirical analysis of inequality spillovers in U.S. local la-

bor markets. We use restricted-access Census and American Community Survey data

from 1980 to 2012 to build a panel of labor market areas (LMAs, which are aggregates

of commuting zones) and conduct our analysis at this level. Guided by our model, we

measure top income inequality as the inverse Pareto parameter for individuals in the

top 10% of the local income distribution. We measure inequality for each occupation,

e.g. physicians, in each region. We then regress local top income inequality among

physicians on local top income inequality in the rest of the population.

An OLS regression could suffer from several endogeneity concerns, so we rely

on a shift-share strategy. For each LMA, we compute a weighted average of national

occupational inequality. The weights correspond to the importance of each occupation

in each LMA at the beginning of our sample. In other words, we only exploit the

changes in local income inequality that arise from the occupational distribution in

1980 combined with the nationwide trends in occupation-specific inequality. This

weighted average serves as our instrument for general inequality in the LMA. We

follow the identification assumption of Goldsmith-Pinkham, Sorkin and Swift (2020),

and assume that the occupational shares are uncorrelated with changes in the outcome
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variable other than through their effect on local top income inequality.

The model predicts local inequality spillovers for occupations providing services

that are heterogeneous in quality, non-divisible, and non-tradable. In Section 5, we

focus on three high-earning occupations satisfying these criteria: physicians, dentists,

and real estate agents. We find positive spillover coefficients, and the effect is eco-

nomically significant: a 1 standard deviation increase in local top income inequality

raises doctors’ top income inequality by 1.1 standard deviation, and dentists’ and real

estate agents’ top income inequality by 1.5 standard deviation.

We next estimate spillover coefficients for an additional 27 occupations common in

the top 10% of the income distribution. Most of these occupations do not entirely fit

the requirements of our theory, and, with a few exceptions, we do not find spillovers

for these occupations. In line with our theory, the spillover coefficients are positively

correlated with measures of the importance of customer service and of working directly

with the public from O*NET and negatively correlated with a measure of tradability.

Together, physicians, dentists, and real estate agents already account for 16% of the

top 1% of earners. We consider them as poster-child occupations where spillovers are

relatively easy to identify, but we hypothesize that spillovers may affect additional

occupations even if our empirical strategy fails to detect them: Spillovers may occur

at the national level, they may only affect subcategories within an occupation (e.g.

personal lawyers but not corporate lawyers), or we may simply have too few observa-

tions to detect them. Beyond occupations common in the top 10%, we find evidence

of spillovers for a range of medical occupations (therapists, veterinarians, etc.).

We conduct numerous robustness checks and extensions on these core results. In

one noteworthy exercise, we leverage the financial deregulation of the 70s, 80s, and 90s

as one specific policy-induced shock to consumer income inequality, rather than using

our shift-share instrument which aggregates many shocks. With this policy-driven

instrument, we continue to find inequality spillovers to doctors and dentists.

Finally, we calibrate our model in Section 6 to quantify its implications using New

York State data. The calibrated model first shows that shifts in consumer income

can explain the observed rise in doctors’ income inequality. Second, spillovers to

doctors alone amplify a given shock to top inequality by 16%.1 Third, it quantifies

how much spillovers dampen the increase in welfare inequality relative to nominal

1For this calculation, top inequality is measured by the ratio of aggregate income earned by
those in the top 1% to aggregate income earned by those in the top 10%.
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income inequality for consumers.

This paper contributes to a large literature on the rise in top income inequality and

its causes (Piketty and Saez, 2003; Atkinson, Piketty and Saez, 2011). We build on the

“superstars” idea of Rosen (1981), who explains how small differences in talent may

lead to large differences in income. The key element in his model is the indivisibility of

consumption, which leads to a “many-to-one” assignment problem as each consumer

only consumes from one performer (singer, comedian, etc.), but each performer can

serve a large market (see also Sattinger, 1993).2 Income inequality among performers

increases because technological change or globalization allows the superstars to serve a

much larger market—that is, to scale up production.3 Specifically, let w(z) denote the

income of an individual of talent z, p(z) the average price for her services, and q(z) the

quantity provided, so w(z) = p(z)q(z). The standard interpretation of “superstars” is

that they have very large markets (high q(z)). This makes such a framework poorly

suited for occupations where output is not easily scalable.

In contrast, we study an assignment model that is “constant-to-one”where super-

stars are characterized by a high price p(z) for their services. This makes us closer to

Gabaix and Landier (2008). They argue that, since executives’ talent increases the

overall productivity of firms, the best CEOs are assigned to the largest firms. They

show empirically that the increase in CEO compensation can be fully attributed to

the increase in firms’ market size. Grossman (2007) and Terviö (2008) present mod-

els with similar results. Our baseline model with a Cobb-Douglas utility between

medical services and the outside good is similar to their production function which is

multiplicative in CEO skill and firm productivity, but we focus on a second moment

of the income distribution (the Pareto tail instead of the mean) and consider a con-

sumption problem. Importantly, we extend the analysis beyond the baseline model

by considering general utility functions, an intensive margin, different entry margins,

geographical reallocation, and limited substitutability between quality and quantity.4

Our theory offers an amplification mechanism where any shock to top income

inequality can spill over to other occupations. The “original” shock may arise from

2Adding network effects, Alder (1985) goes further and writes a model where income can dras-
tically differ among artists of equal talents.

3Koenig (2021) provides empirical evidence for entertainers using the roll-out of television.
4Relatedly, Määttänen and Terviö (2014) build an assignment model for housing, which they

calibrate to six U.S. metropolitan areas. They find that the increase in income inequality has led to
an increase in house price dispersion (see also Landvoigt, Piazzesi and Schneider, 2015).
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various channels: technological change affecting firm size (Geerolf, 2017), globaliza-

tion (Bonfiglioli, Crino and Gancia, 2018), an increase in innovation (Jones and Kim,

2018, Aghion et al., 2019), tax system changes (Piketty, Saez and Stantcheva, 2014),

or increased occupational specialization (Edmond and Mongey, 2021). Our theory

is agnostic about which explanation matters most for the original rise in income in-

equality, and focuses on the resulting spillovers to other occupations. Nevertheless, we

trace out the spillover effects of a specific shock, namely deregulation in the financial

sector as studied by Philippon and Reshef (2012).

Finally, our paper relates to a literature on demand spillovers. In the sociol-

ogy literature, Wilmers (2017) shows in OLS panel regressions a positive association

between wage inequality and dependence on high-income consumers at the indus-

try level. Manning (2004) and Mazzolari and Ragusa (2013) relate the polarization

of labor markets to an increase in high-skill workers’ demand for low-skill services.

Leonardi (2015) argues that high-skill workers also demand relatively more services

from other high-skill workers, a pattern that can amplify increases in the skill pre-

mium.5 Importantly, our focus is not the skill premium across occupations, but on

changes in top income inequality within an occupation.

2 The Rise of Within-Occupation Top Income Inequality
We begin by showing the importance of within-occupation trends in top income in-

equality. Among workers with positive wage and salary income, the ratio of incomes

at the 98th to 90th percentile rose from 1.7 to 2.0 between 1980 and 2012.6 The ratios

also increased for physicians—from 1.5 to 1.8—and for dentists and real estate agents.

To systematically understand the role of occupations, Figure 1 decomposes overall

changes in wage income from 1980 to 2012 into within- and between-occupation com-

ponents. The green series in Panel (a) shows the overall change in log wage income at

each percentile of the distribution. This reproduces the well-known fact that incomes

have grown the fastest in the top of the distribution during this time period. We

then adapt the within- and between-firm decomposition of Song et al. (2019) to use

occupations instead of firms.7 The green series shows that the average log income of

5In Buera and Kaboski (2012), structural change leads to a rise in the skill premium as the
demand for skill-intensive service increases with income.

6We rely on the Decennial Census (1980, 1990, 2000) and the American Community Survey 2010-
2014 waves (henceforth 2012). Appendix Table D.1 shows the corresponding changes for selected
occupations. Details on the data are in Section 4 and Appendix B.1.

7To find the effect of within-occupation changes, we hold the average log wage income for oc-
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Figure 1: Changes in wage income from 1980 to 2012 - between and within occupations
(a) Changes along the income

distribution
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(b) Decomposition for percentile ratios
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Notes: Panel (a) shows the log change in wage income between 1980 and 2012 for all percentiles of the income distri-
bution (green line). Following the method of Song et al. (2019), we decompose this change into changes attributable
to between-occupation (red line) and within-occupation (blue line) changes. Panel (b) shows the contributions of
between- and within- occupation effects for top income inequality. p99/p90 is the ratio of the top 1% to the top 10%.

the top 1% rose by 0.56 log points during this period, and the blue series shows that

increases in within-occupation income inequality drove 0.24 log points of this total.

Regardless of how we measure top income inequality, inequality within occupations

plays a central role. Panel (a) shows that income at the 99th and 90th percentiles rose

by 0.56 and 0.32 log points, respectively, implying a 0.24 increase in their difference.

Within-occupation factors account for 0.17(= 0.24–0.07) of this change (blue bar), i.e.

70% of the total. Panel (b) shows similar patterns for other percentile ratios; 65–75%

of the rise in top inequality reflects within-occupation changes. Within-occupation

inequality rose most in the top, motivating our focus on the top 10%.8

3 Theory
Motivated by these patterns, we build an assignment model between doctors and

their patients to study inequality spillovers across occupations. Section 3.1 presents

a special case and Section 3.2 the more general results. Section 3.3 relaxes several

assumptions, including allowing for occupational and geographical mobility. Section

cupations fixed at the level of 1980 and only include the changes in the distribution around the
averages. For the between-occupation changes we hold the distribution around the average con-
stant, but change the average log wage for occupations. Due to the binning, these two effects don’t
identically sum to the total change, though in practice the differences are small. See Appendix B.1
and Song et al. (2019) Online Appendix E for further details.

8This is consistent with Edmond and Mongey (2021) who, using CPS data, find that residual
income inequality has risen for high-skill workers but fallen for low-skill workers. See also Erosa et
al. (2025).
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3.4 summarizes our empirical predictions.

3.1 The Cobb-Douglas special case

We consider an economy populated by two types of agents: widget makers of mass 1

and (potential) doctors of mass µ.

Production. Widget makers represent the general population. They produce

widgets, a homogeneous numeraire good. A widget maker of ability x can produce

x widgets. The ability distribution is Pareto with parameter αx > 1 on x ≥ xmin,

such that a widget maker has ability X > x with probability P (X > x) =
(
xmin

x

)αx
.

The Pareto parameter, αx, is an (inverse) measure of the spread of abilities. We

treat αx as exogenous throughout and a fall in αx captures a general increase in top

income inequality.9 Such a change could arise from globalization or new technology

and directly impacts widget makers but not doctors. We set xmin = αx−1
αx

x̂ to fix the

mean at x̂ when αx changes.

Doctors produce health services and can each serve λ customers, where we impose

λ > µ−1 so that there are enough doctors to serve everyone. Potential doctors differ

in their ability z, according to a Pareto distribution with shape αz. They have ability

Z > z with probability P (Z > z) =
(
zmin

z

)αz
. All potential doctors can alternatively

work as widget makers and produce widgets at some constant ability, which, without

loss of generality, we set at xmin. (In Section 3.3.2 we instead let an individual’s

potential ability as a doctor and a widget maker be perfectly correlated). Unlike

Rosen (1981), the ability of a doctor does not change how many patients she can

treat. Instead, her skill increases the utility patients get from her care.

Consumption. Widget makers are also doctors’ patients. Their preferences over

the two goods are represented by the Cobb-Douglas utility function:

u (z, c) = zβc1−β, (1)

where c is the consumption of widgets and z is the quality of (one unit of) health

care. This quality is equal to the ability of the doctor providing the care. The notion

that medical services are not divisible is captured by the assumption that each patient

needs to purchase care from exactly one doctor; one cannot substitute quantity for

quality. As a result, there need not be a common price per unit of quality-adjusted

9Guvenen, Karahan, Ozkan, and Song (2021) show that the top of the income distribution is
well-described by a Pareto distribution.
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medical services. More generally, “doctors” here stand in for any occupation which

produces non-divisible goods or services for the general population, including dentists

and real estate agents.10 The Cobb-Douglas utility function eases exposition but can

be generalized, as we do in Section 3.2. For simplicity, doctors only consume widgets,

so the patients are exclusively widget makers.

3.1.1 Equilibrium

Widget makers. Since a widget maker of ability x produces x homogeneous wid-

gets, widget makers’ income must be distributed like their ability. The consumption

problem of a widget maker of ability x can then be written as:

max
z,c

u(z, c) = zβc1−β subject to ω (z) + c ≤ x,

where ω (z) is the price of medical care from a doctor of ability z. Taking first order

conditions with respect to z and c yields:

ω′ (z) z =
β

1− β
[x− ω (z)] . (2)

With Cobb-Douglas preferences, no widget maker spends all their income on

health care, so equation (2) implies that ω(z) must be increasing: Higher-ability

doctors earn more per patient. Importantly, the non-divisibility of medical services

makes doctors “local monopolists” who compete directly only with doctors of slightly

higher or lower ability, and ω(z) need not be linear in z.

As long as the utility function has positive cross-partial derivatives, the equilibrium

involves positive assortative matching between widget makers’ income and doctors’

ability (see Appendix A.1). We denote the matching function as m (z): a doctor of

ability z will be hired by a widget maker whose income is x = m(z).

Doctors. Since there are more doctors than needed, those with lowest z will work

as widget makers rather than as physicians. Letting zc be the ability level of the

least able practicing doctor, m (z) is defined over [zc,∞) and m (zc) = xmin; the worst

10Although we refer to the “quality” of the good, nothing in our model relies on the “high-quality”
goods being objectively superior. It is really “quality as perceived by top-earning patients.” So a
pediatrician who can assuage an anxious parent might have a higher z than one with better diagnostic
skills but fewer interpersonal skills. That said, the empirical literature using revealed-preference finds
it to be correlated with measures of medical outcomes (e.g., Dingel et al., 2023).
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doctor is hired by a patient with income xmin. Market clearing at each z implies:

P (X > m (z)) = λµP (Z > z) , ∀z ≥ zc. (3)

There are µP (Z > z) doctors with an ability higher than z, each of these doctors can

serve λ patients, and there are P (X > m (z)) patients whose income is higher than

m (z). With Pareto distributions, we can write the matching function explicitly:

m (z) = xmin (λµ)
− 1

αx

(
z

zmin

)αz
αx

. (4)

Intuitively, if top talent is relatively more abundant among doctors than widget mak-

ers (αz < αx,), then the matching function is concave. Conversely, it is convex if

αz > αx. We then obtain the cutoff value zc = (λµ)
1
αz zmin.

Let w (z) denote the income of a doctor of ability z and note that w(z) = λω(z)

since each doctor provides λ units of health services. As a potential doctor of ability

zc is indifferent between working as a doctor or a widget-maker earning xmin, we must

have w (zc) = xmin. Combining (2) and (4), we obtain a differential equation that the

wage function w (z) must satisfy:

w′ (z) z +
β

1− β
w (z) =

β

1− β
xmin

(
λαx−1

µ

) 1
αx
(

z

zmin

)αz
αx

. (5)

Using the boundary condition at z = zc, we obtain a single solution for the wage

profile of doctors. Appendix A.2.1 demonstrates that this function is:

w (z) = xmin

[
λβαx

αz (1− β) + βαx

(
z

zc

)αz
αx

+
αz (1− β) + βαx (1− λ)

αz (1− β) + βαx

(zc
z

) β
1−β

]
. (6)

As expected, the wage profile w (z) is increasing in doctors’ ability z, and w (zc) =

xmin. The first term on the right hand side of (6) dominates for large z
zc

and implies

an asymptotic Pareto distribution, so that for large z
zc
, we get:

w (z) ≈ xmin
λβαx

αz (1− β) + βαx

(
z

zc

)αz
αx

. (7)

Equation (7) shows that the wage schedule at the top is concave in z if αz < αx;
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that is, if talent is relatively more abundant among physicians than widget makers.

To see why, suppose counterfactually that ω(z) ∝ z. Widget makers would then

spend a rising share of income on medical services. However, this is in conflict with

Cobb-Douglas utility for linear pricing schedules which gives constant spending shares.

Hence, this cannot be an equilibrium: demand for high-ability doctors would have

to drop, reducing their prices, and resulting in a concave payment schedule. Non-

divisibility of medical services is crucial: if high-earning widget makers could simply

substitute the services of one doctor of ability z with two doctors of ability z/2, a linear

pricing schedule would emerge. Conversely, the payment schedule would be convex

if talent were relatively scarce among doctors. This wage schedule then guarantees

that consumers spend asymptotically a constant share of their income on health care

(to see this, combine (4) and (7)). We can thus derive:

Proposition 1. Doctors’ income is asymptotically Pareto distributed with the same

shape parameter as for the widget makers. In particular, an increase in top income

inequality for widget makers increases top income inequality for doctors. Health ex-

penditures grow proportionately with income: h (x) ≈ ηx, where η is a constant.

To see this, we first define the relevant distribution. For active doctors, the prob-

ability that income exceeds wd is given by Pdoc (Wd > wd) =
(
w−1(wd)

zc

)−αz

. Using

equation (7), for wd large enough, we can approximate this distribution as:

Pdoc (Wd > wd) ≈
(

xminλβαx
αz (1− β) + βαx

1

wd

)αx

. (8)

That is, the income of (active) doctors is Pareto distributed at the top. Importantly, in

this Cobb-Douglas setting, the shape parameter is inherited from the widget makers,

and is independent of αz, the spread of doctor ability. A decrease in αx directly

translates into a decrease in the Pareto parameter for doctors’ income distribution.

In other words, the increase in top income inequality spills over from one occupation

(the widget makers) to another (doctors). At the top, widget makers’ inequality also

increases doctors’ incomes—a decrease in αx leads to an increase in P (Wd > wd) for

wd high enough.11 Further, a decrease in the mass of potential doctors µ (equivalent

11Not all doctors benefit, though, as we combine a decrease in αx with a decrease in xmin to keep
the mean constant. As a result the least able active doctor, whose income is xmin, sees a decrease in
her income. Had we kept xmin constant so that a decrease in αx also increases the average widget
maker income, then all doctors would have weakly gained.
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to an increase in the mass of widget makers) increases the share of doctors who are

active (zc decreases) and their wages (as w (z) increases if zc decreases) but has no

effect on doctors’ top income inequality.

Our results directly generalize to the case where patient income and doctor ability

are only asymptotically Pareto distributed and where potential doctors may (but need

not) also consume medical services (see details in Appendix A.3). Our results also

hold when doctors’ ability distribution has a tail fatter than Pareto. When the tail

is thinner than Pareto, a spillover result still holds, although doctors’ income is no

longer Pareto distributed (see Appendix A.4).

Taking stock. Proposition 1 establishes the central theoretical result: Changes in

widget makers’ income inequality translate directly into doctors’ income inequality.

3.1.2 Welfare inequality

The lack of a uniform quality-adjusted price implies that prices vary along the income

distribution. Heterogeneity in consumption patterns implies that people at different

points of the income distribution face different price indices (Deaton, 1998). A given

increase in income inequality thus translates into a lower increase in welfare inequality.

The assignment mechanism implies that as inequality increases, the richest widget

makers cannot obtain better health services; in fact, they pay more for health services

of the same quality. This mechanism limits the increase in welfare inequality.12

To assess this formally, we use a consumption-based measure of welfare. We

compute the level of consumption of the homogeneous good eq (x) that, when com-

bined with a fixed level of health quality zr, gives the same utility to the widget

maker as what she actually obtains. That is, we define eq (x) through u (zr, eq (x)) =

u (z (x) , c (x)). This yields (with a proof in Appendix A.2.2):

Proposition 2. For x large enough, welfare eq(x) is Pareto-distributed with shape

parameter αeq ≡ αx

1+αx
αz

β
1−β

. Thus d lnαeq

d lnαx
= 1

1+αx
αz

β
1−β

< 1, so an increase in widget

makers’ income inequality translates into a less-than-proportional increase in their

welfare inequality. The mitigation is stronger when health services matter more (high

β) or when doctors’ abilities are more unequal (low αz).

12Moretti (2013) can be viewed as discussing a similar assignment mechanism: high earners locate
in high-cost cities, so real inequality is lower than nominal inequality across space.
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3.2 Generalizing the utility function

Our results obtain in a much more general case than the Cobb-Douglas utility assumed

so far. In Appendix A.3.3, we show that they generalize to any homothetic utility

function that admits positive and finite limits to the elasticity of substitution between

health care quality and the homogeneous good when z/c tends to either infinity or 0.

For simplicity, we focus here on the case when preferences have a constant elasticity

of substitution (CES). That is, we replace the utility function of equation (1) with:

u(z, c) =
(
βz

ε−1
ε + (1− β) c

ε−1
ε

) ε
ε−1

, (9)

where ε is the elasticity of substitution between health care quality and the homoge-

neous good. We also only assume that widget makers’ and doctors’ ability distribu-

tions are asymptotically Pareto. With CES preferences, the equilibrium still features

positive assortative matching. In Appendix A.3.2, we show:

Proposition 3. If either (i) ε > 1 and α−1
z ≤ α−1

x , or (ii) ε < 1 and (1− ε)α−1
z <

α−1
x ≤ α−1

z , doctors’ wages are asymptotically Pareto distributed with shape parameter

α−1
w =

1

ε
α−1
x +

(
1− 1

ε

)
α−1
z , (10)

so doctors’ top income inequality increases with widget makers top income inequality.

In addition, log health expenditures grow proportionately with log income: lnh (x) ≈[(
1− αx

αz

)
1
ε
+ αx

αz

]
lnx+ η̂, where η̂ is a constant.

Proposition 3 restricts attention to two cases. We argue below that, beyond Cobb-

Douglas (ε = 1), these are the two empirically relevant cases. In both cases, doctors’

income is asymptotically Pareto distributed with an inverse Pareto parameter that

is a linear combination of those for doctors’ ability and widget makers’ income. An

increase in widget makers’ top income inequality (α−1
x ) leads to an increase in doctors’

top income inequality, with a coefficient that has a direct interpretation as the inverse

elasticity of substitution between health care quality and the homogeneous good.

Health care expenditures increase less than proportionately with income for αz ̸= αx.

To understand the results of Proposition 3 intuitively, and why we restrict at-

tention to certain parameter sets, consider the two cases in turn. First, let medical

services and the outside good be substitutes (ε > 1) and let top doctors’ skill be

12



relatively scarce (α−1
z < α−1

x ). In the Cobb-Douglas case (ε = 1), the pricing schedule

would be convex (see (7)) and widget makers would spend a constant share of their

income on health care. With ε > 1, widget makers reduce their demand for relatively

expensive health-care services and health expenditures grow less than proportionately

with income, since
(
1− αx

αz

)
1
ε
+ αx

αz
< 1. As a result, the wage schedule is less convex

than in the Cobb-Douglas case, and the inverse Pareto coefficient for doctors’ income

distribution, α−1
w , is smaller than α−1

x —but still increasing in α−1
x . In contrast, if ε > 1

and doctors are abundant at the top (α−1
x < α−1

z ), widget makers would increase their

demand for health care services, asymptotically spending nearly all their income on

health care, which is counterfactual (and therefore ignored in Proposition 3).

The other case considered in Proposition 3 is when medical services and other

goods are complements (ε < 1) and when doctors are relatively abundant in the

top: α−1
x < α−1

z . With relatively abundant medical services and complementarity

between goods, health care expenditures rise less than proportionately with income.

Doctors’ income is then again asymptotically Pareto distributed with shape parameter

α−1
w < α−1

x , provided doctors are not too abundant at the top ((1− ε)α−1
z < α−1

x ).13

Our empirical analysis suggests that the CES case is more relevant than Cobb-

Douglas. First, Appendix C estimates empirical Engel curves for medical care. We

find slopes less than 1, in line with Proposition 3 and in contrast with the Cobb-

Douglas case. Second, we will estimate spillover coefficients above 1 (though not

always statistically significantly above 1), corresponding to an elasticity ε < 1. Im-

portantly, when ε < 1, a growing spread in doctors’ ability (an increase in α−1
z ) reduces

doctors’ income inequality (α−1
w decreases). This is because as α−1

z increases, more

top doctors compete for patients who are spending a declining share of their income

on health care as we move into the tail. In our model, skill-biased technical change

for widget makers can be captured by an increase in α−1
x . Similarly, an increase in

α−1
z can capture technical change that increases the relative ability of doctors at the

top of the distribution. Our results therefore show that this form of technical change

for doctors can paradoxically decrease their top income inequality in what will appear

13Equation (10) always holds as long as the right-hand side lies in the interval [0, α−1
x ] and covers

the Cobb-Douglas case. Appendix A.3.2 presents the results for the alternative parameter spaces.
If ε < 1 and α−1

x < (1− ε)α−1
z , doctors’ income is not Pareto distributed and the slope of the

Engel curve is asymptotically zero (lnh (x) / lnx → 0) for high incomes. If (ε− 1)
(
α−1
z − α−1

x

)
> 0,

widget makers asymptotically spend all their income on health care and doctors’ income is Pareto
distributed with shape parameter αx. Appendix C shows that the slope of the (log) Engel curve is
asymptotically positive and finite, ruling out these two cases.
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to be the most relevant case empirically.

Finally, αz and αx are likely to be positively correlated empirically: places with

more talent dispersion for widget makers are likely to also have more talent disper-

sion for doctors. Therefore, without a control for the (unobserved) physician ability

distribution, the coefficient of an OLS regression of physician income inequality on

widget makers’ income inequality would suffer from a downward bias when the true

coefficient is above 1—consistent with our findings in Section 5.1.

3.3 Extensions

Our model makes several assumptions about preferences, the structure of labor mar-

kets and production. To devise appropriate empirical tests for spillovers, we need to

establish which assumptions drive the results and which are innocuous. We now show

that our results are robust to introducing scalability for medical services, geograph-

ical mobility, and occupational mobility for doctors. In contrast, two assumptions

are necessary for local inequality spillovers: sufficiently low substitutability between

quality and quantity of medical services and non-tradability.

3.3.1 Scalability

While doctors’ supply was inelastic in the baseline model, we now allow them to in-

crease output at some cost. Specifically, doctors pay effort costs kλ1/ε
S+1/

(
1/εS + 1

)
where k > 0, εS > 0, and λ is the number of patients treated. (Results are identical

if doctors pay monetary costs.) Doctors’ utility maximization problem immediately

implies that their scale depends on the price they can charge as

λ (z) = (ω (z) /k)ε
S

, (11)

so that εS is the (intensive margin) supply elasticity of medical services. Doctors’

income is then given by w (z) = λ (z)ω (z) = ω (z)1+ε
S

/kε
S
. The widget makers’

consumption problem remains identical and there is still positive assortative matching,

though market clearing takes into account that doctors serve different number of

patients. In Appendix A.5, we solve the model and prove:

Proposition 4. Doctors’ income is asymptotically Pareto distributed when:

utility is CES with either (i) ε = 1, (ii) ε < 1 and (1− ε)αx < αz < εS + αx, or (iii)
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ε > 1 and αz > εS + αx. In all cases the shape parameter is

α−1
w =

1 + εS

1 + εS

ε
α−1
x

((
1− 1

ε

)
α−1
z +

1

ε
α−1
x

)
. (12)

An increase in widget makers’ top income inequality increases doctors’ income top

income inequality (dα
−1
w

dα−1
x

> 0). A higher supply elasticity εS increases doctors’ top

income inequality if and only if εαx > 1.

This Proposition shows that the results of Propositions 1 and 3 generalize as long

as the supply elasticity of doctors is finite.14 An increase in widget makers’ top income

inequality increases doctors’ top income inequality, by increasing inequality in both

health care prices and quantities supplied (with“weights” 1
1+εS

and εS

1+εS
, respectively).

A higher supply elasticity for widget makers would unambiguously increase their

income inequality, but a higher εS has an ambiguous effect on doctors’ top income

inequality. Top doctors can disproportionately expand their scale, but the increased

supply of high-quality services depresses prices. This price effect is stronger when

health care and the homogeneous good are more complementary (ε low), so higher

εS reduces doctors’ income inequality if ε < α−1
x . Therefore, technological change

(e.g. greater task delegation) that allows top doctors to serve more patients (as in

the classic superstar story) need not increase top income inequality. Empirically,

a uniform increase in εS across regions would not bias our coefficient; but if areas

with rising widget makers’ inequality also experience larger increases in εS, our OLS

estimates would be biased upwards when εαx > 1.

3.3.2 Occupational mobility

We have assumed so far that a potential doctor choosing to work as a widget maker

earns the minimum widget maker income, xmin. In practice, those succeeding as

doctors may have succeeded in other occupations as well (Kirkeboen, Leuven and

Mogstad, 2016). To capture this, we now switch to the opposite extreme and as-

sume perfect correlation between an individual’s ability as a doctor and a widget

maker. More specifically, we assume that there is a mass of 1 of agents with a uni-

dimensional (Pareto) distribution of skills who decide whether to be doctors or widget

14Gottlieb et al. (2025) estimate a supply elasticity of 0.4 when payments for a doctor’s services
change. Looking across a broader set of supply responses—beyond those relevant for the Proposi-
tion—Clemens and Gottlieb (2014) estimate supply elasticities around 1. There is no contention in
the literature that supply is perfectly elastic.
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makers. While Section 3.3.1 examined the intensive labor supply margin (doctors in-

creasing their scale), this extension studies the extensive labor supply margin (more

talented individuals choosing to become doctors). For simplicity, we focus on the

Cobb-Douglas case (though similar results can be obtained in the CES case).

Appendix A.6 shows that Proposition 1 still applies: Doctors’ incomes are Pareto

distributed with the same coefficient αx as widget makers, as long as λαx−1
(
αz

αx

1−β
β

+ 1
)−αx

< 1. This condition ensures that in equilibrium, above a certain threshold, individ-

uals of a given ability choose to become both doctors and widget makers (otherwise

all top individuals choose to be doctors). Intuitively, once individuals have decided

their occupation, the ability distribution of doctors is again Pareto, so the results of

the baseline model still apply.15

3.3.3 Geographical mobility

We now extend the baseline model to allow doctors to move across two regions, A and

B, of equal size. Medical services are non-tradable and patients are immobile. The re-

gions differ only in the Pareto shape parameter of widget makers’ ability distributions,

with A more unequal than B (αAx < αBx ). Doctors’ abilities are Pareto distributed

with a common parameter αz. For simplicity, we focus on the Cobb-Douglas case,

though similar results can be derived in the CES case (as well as settings with multiple

regions and heterogeneous masses of potential doctors and widget makers).

In autarky, each region mirrors the baseline model: doctors’ incomes are asymp-

totically Pareto distributed with shape parameters matching the local widget maker

distribution. With doctor mobility, however, wages ω(z) must equalize across regions.

Since incomes are higher at the top in region A, high-ability doctors from B migrate

to A, while labor market clearing requires lower-ability doctors to move from A to B.

As a result, A has a more unequal distribution of doctors’ ability than B, but both

equilibrium ability distributions are asymptotically Pareto. Appendix A.7 proves:

Proposition 5. Once doctors have relocated, the income distribution of doctors in

region A is asymptotically Pareto with coefficient αAx , and the income distribution of

doctors in region B is asymptotically Pareto with coefficient αBx .

15With occupational mobility, note that doctors and widget makers interact through both a
demand effect and a labor supply effect. Since the wage level is directly determined by doctors’
outside option, one may think that the mechanism which leads to spillovers in income inequality is
very different compared to the demand-side mechanism of the baseline model. In Appendix A.6.1,
we split the role of widget makers into two (patients and an “outside option”) and show that, with
Cobb-Douglas preferences, doctors’ income inequality is only driven by their patients’ inequality.
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Thus, doctors’ observed income inequality continues to reflect local consumer in-

equality even with doctor mobility. Our empirical analysis therefore does not require

us to model geographic mobility of doctors explicitly.16

3.3.4 Quality-quantity tradeoff

Our baseline model assumes that healthcare is non-divisible, i.e. quantity cannot

substitute for quality of health care. How crucial is this assumption? To answer this,

we consider the baseline model with Cobb-Douglas preferences between the outside

good and health care consumption but now let health care, H, be a CES aggregate

of quality z and quantity q. We assume that a patient must consume health care

services of the same quality. We replace the utility function in (1) by

u (q, z, c) = Hβc1−β with H ≡
(
(1− γ)

1
θ q

θ−1
θ + γ

1
θ z

θ−1
θ

) θ
θ−1

,

where θ measures the elasticity of substitution between quality and quantity. In Ap-

pendix A.8, we show that the equilibrium still features positive assortative matching

if θ < 1, and as long as αz > αx − 1, doctors’ income distribution is asymptotically

Pareto distributed with top income inequality spillovers from consumers to doctors

(with αz < αx − 1 doctors’ income is bounded). In contrast, if θ = 1, there is no

positive assortative matching and doctors’ income is proportional to their ability.

3.3.5 Tradability

Finally, we permit trade in medical services across regions. Since our empirical anal-

ysis relies on local spillovers of income inequality, this extension explicitly addresses

predictions when services are not sold in a local market. Consider the baseline model

of Section 3.1, but with several regions indexed by s ∈ {1, . . . , S}. We allow some pa-

tients (a positive share of rich widget makers) to purchase their medical services across

regions. The distribution of potential doctors’ ability is the same in all regions, and so

is the number of patients served per doctor, λ. The other parameters—in particular

the Pareto shape parameter of widget makers’ income αsx—are allowed to differ across

regions. It follows that in the top, national income is asymptotically distributed with

16Interestingly, the nature of the spillover effect is different with and without mobility: In autarky,
local income inequality affects doctors’ pay schedule and thereby doctors’ local income inequality.
With mobility of doctors and many regions, a change in local income inequality does not affect the
pay scale for doctors as a function of their ability at the top (except for the most unequal region),
but it changes the local ex post ability distribution and thereby doctors’ local income inequality.
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the lowest αsx, that of the most unequal region.17

The cost of high-quality health care services must be the same everywhere; oth-

erwise, the widget makers who can travel would go to the region with the cheapest

health care. Therefore top talented doctors must all earn the same wage for the same

ability. Since national top income inequality for widget makers is mins α
s
x, doctors’ in-

come in all regions is asymptotically Pareto distributed with shape parameter mins α
s
x

(see details in Appendix A.9). That is, there are national but not local spillovers.18

It is important to recognize that spillovers still exist. An increase in income

inequality for the region with the highest income continues to determine the income

inequality of physicians (in all regions). However, an empirical analysis based on

local spillovers will fail to find an effect at least in the tail. Empirically, whether the

service provided is “local” (non-tradable) or “non-local” (tradable) will depend on the

occupations of interest. We will use these results to guide our empirical analysis.

3.4 Empirical predictions and institutional details on health care

To summarize, our model makes the following predictions (where “doctors” represent

all occupations that fit the assumptions). (1) High-earning consumers are treated

by more expensive doctors. (2) An increase in local inequality will increase local

inequality for doctors if they serve the general population directly and their services

are non-divisible (or more generally feature limited substitution between quality and

quantity). (3) This is true regardless of whether (i) doctors can move across regions

and (ii) whether doctors’ ability is positively correlated with the income they would

receive in alternative occupations. (4) If medical care is tradable, doctors’ income in

each region does not depend on local income inequality, but on national inequality.

While “doctors”are a primary example of an occupation with inequality spillovers,

the medical industry in the U.S. is not perfectly described by the flexible price-setting

of our model. The government plays a substantial role through Medicare and Medi-

caid, the insurance sector acts as an intermediary, and there is information asymme-

try between patients and doctors. But these institutional intricacies need not inhibit

17If doctors are mobile and medical services are also tradable, the geographic location of agents is
undetermined in general, and we would need a full spatial equilibrium model to generate empirical
predictions.

18Formally, we show in a model with a continuum of agents, that the income distribution of doctors
is approximately Pareto with shape parameter minsα

s
x above a certain cutoff for any positive share

of mobile patients. That cutoff depends positively on the share of mobile patients. In practice,
national spillovers would be negligible if only a small fraction of patients travel.
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market forces—including our spillovers—from operating. In fact, they may offer a

mechanism that implements the forces our model discusses. Providers’ negotiations

with private insurers generally lead to higher prices in the private market than un-

der public insurance (Clemens and Gottlieb, 2017). Despite asymmetric information,

patients often have clear beliefs about who the “best” local doctor in a specific field

is, whether or not these beliefs relate to medical skill or health outcomes (Kolstad,

2013; Epstein, 2006; Steinbrook, 2006). Finally, though Dingel et al. (2023) document

patients sometimes traveling for care, the distance sensitivity is high.19 Therefore,

despite these complications, the structure of the health industry may embody enough

flexibility to incorporate the local economic pressures implied by our model.

Appendix C provides evidence in favor of our model’s first prediction, namely that

there is positive assortative matching between patients’ income and medical providers’

prices, using medical claims data. We also document that health spending increases

with income, using a nationally representative survey. In the rest of the paper, we

test our core prediction: within a local geographic market, inequality spills over into

occupations that provide non-divisible services with heterogeneous quality.

4 Empirical Strategy to Identify Spillovers
This section introduces the main empirical test of our model, using geographical vari-

ation in income inequality across LMAs in the U.S. Our goal is to estimate the causal

effect of general income inequality on income inequality within a specific occupation.

4.1 Income data

We use the Decennial Censuses from 1980, 1990, and 2000 and the 2010-2014 (referred

to as “2012”) waves of the American Community Survey (ACS). We refer to this

combined data as Census data. We use 2010-2014 as opposed to 2008-2012 to avoid

the immediate aftermath of the Great Recession, which had a large impact on top

incomes. We access the restricted-use versions of each which contain a larger sample

of respondents and less income censoring than public-use versions.20 Data from before

19Dingel et al. (2023) show that in 2017 around four-fifths of medical care is consumed in the same
Hospital Referral Region (roughly the size of the Labor Market Areas we use) where it is produced.
Our strategy focuses on an earlier period, 1980–2012, where trade in medical services was lower. It
also more heavily weights large metropolitan areas, which tend to have more types of care and expert
physicians available, so patients from these regions travel for care even less frequently. Regardless,
our theoretical analysis suggests that national travel would reduce our estimated regional spillovers.

20The detailed Decennial Census long-form surveys 1/6th of the population. Each of the five
ACS samples is 3%, so combining them gives a sample of 15%. We inflation-adjust incomes to 2000
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1980 has substantially smaller samples, and we exclude them from the main analysis.

Appendix B.2 discusses the definitions of occupations and geographic locations (Labor

Market Areas, LMAs) that we use.

Motivated by our theoretical model, we measure a distribution’s top income in-

equality by its estimated Pareto parameter. Consider a set of observations N =

{xi}Ni=1 drawn from a Pareto distribution with two parameters: the minimum value

and the Pareto parameter. The maximum likelihood estimate for the minimum value

is x̂min = min{xi}Ni=1 and for the Pareto parameter:

α̂−1 =
1

N

∑
i∈N

ln

(
xi
x̂min

)
, (13)

That is, the estimate of the inverse Pareto parameter is the average log distance from

the chosen minimum value. So α̂−1 is a measure of income inequality even if the

distribution is not exactly Pareto. We adjust (13) for the small number of censored

observations (see Appendix B.1). Guvenen, Karahan, Ozkan, and Song (2021) and

Jones and Kim (2014) also use α−1 as a measure of inequality.

Our focus on top income inequality requires choosing xmin. Since the Pareto

distribution is a good fit in the top decile, we set xmin as the 90th percentile of the

local income distribution of employed adults (age ≥ 25) with positive wage income.

Our analysis is demanding of the data: for a given occupation in a given location,

computing top income inequality requires many observations. To get enough obser-

vations, we use the same xmin to compute all occupation-specific α̂−1
o measures. For

example, to compute top income inequality of physicians in New York, we use physi-

cians in the top 10% of New York’s overall distribution, which is much more than 10%

of New York’s physicians because they are high-earners. This approach also implies

that we use a consistent slice of the population—those in the upper decile of their

area’s distribution—when considering different outcome occupations (e.g. dentists,

real estate agents). This aligns with the motivating observation in Figure 1a that

rising within-occupation inequality is concentrated at the top of the distribution.

For our regressions, we will use a balanced panel of the 50 most populous LMAs

(as of 1980). These areas tend to have a sufficient number of observations to reliably

dollars. Whereas the publicly available data is censored at around the 99.5th percentile of the overall
income distribution, the restricted data has very little censoring. For instance, in New York State
only around the top 0.1% is censored. Among physicians the number is well below 0.5%.

20



Table 1: Wage income: Ratio 98/90: actual values and predicted values

General Population Physicians Dentists Real Estate Agents

Year α−1 98
90

9̂8
90

α−1 98
90

9̂8
90

α−1 98
90

9̂8
90

α−1 98
90

9̂8
90

1980 0.34 1.70 1.72 0.25 1.50 1.50 0.29 1.54 1.61 0.42 1.94 1.97
1990 0.38 1.87 1.85 0.40 1.89 1.90 0.35 1.90 1.76 0.47 2.17 2.12
2000 0.42 2.00 1.96 0.33 1.75 1.71 0.33 1.69 1.70 0.54 2.40 2.37
2012 0.42 1.99 1.96 0.34 1.72 1.72 0.36 1.74 1.78 0.50 2.17 2.22

Notes: The inverse Pareto parameter, α−1, is calculated in the top 10% of the relevant national wage income
distribution (general population, physicians, dentists, real estate agents). 98

90
is the ratio of the 98th to 90th percentile

of income. 9̂8
90

is the 98
90

ratio predicted based on the estimated Pareto parameter as 5α
−1

.

compute income inequality for the occupations of interest.21 Including less popu-

lated LMAs starts to introduce imbalance in the panel for the smaller occupations of

interest. We discuss robustness to these choices below.

4.2 Income distribution statistics

We now present summary statistics on income distributions and discuss how well

they fit the Pareto distribution. Our main income measure is pre-tax wage and

salary income. Appendix Table D.2 shows descriptive statistics in 2000 for the most

common occupations in the top decile of the national income distribution. It reports

each occupation’s mean income and the share of the top 1%, 5%, and 10% that the

occupation represents. Physicians are one of the most common occupations at the

top, accounting for 13% of the top 1% (more than the three financial occupations

together) and 4% of the top 10%.

We next analyze whether national income distributions are Pareto at the top.

With a large number of observations at the national level, we can estimate α̂−1 in the

top 10% for doctors, dentists, and real estate agents, respectively. We also compute

α̂−1 for the general population in their top decile. Table 1 reports the results. α̂−1

is mostly larger for the general population than for doctors and dentists which is

consistent with the CES model of Section 3.2. To assess the Pareto fit, we compare

the ratio of the 98th and 90th income percentiles against the predicted 98/90 ratio

assuming income is Pareto distributed (calculated as 51/α). The predicted and actual

ratios agree closely, consistent with upper tail incomes being Pareto distributed.

Finally, we assess the extent to which the general and physician income distribu-

tions are Pareto at the sub-national level. The Pareto distribution implies a linear

21For a Pareto distribution, the maximum likelihood estimator α̂−1 has a standard error of σ̂ =
N−1/2α̂−1. When N ≥ 20, the ratio σ̂/α̂−1 < 0.22. In Table 6, we indicate how many LMA-year
pairs have an outcome α̂−1 calculated using fewer than 20 observations. Using the top 50 most
populous LMAs ensures that N ≥ 20 is nearly always the case for key occupations of interest.
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Figure 2: Fit of the Pareto Distribution - New York State (2000)
(a) All Occupations
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Fitted values
Fitted Values in Physicians' Top 10%

Notes: This figure shows the quality of fit of the empirical income distribution to the Pareto distribution using
observations from New York State in 2000. The left panel shows the top 10% among all occupations, and the right
panel shows physicians in the top 10% of the total population. The horizontal axis shows the logarithm of incomes
split into 20 equal-width bins. The vertical axis shows the logarithm of 1-CDF(income). By construction, the line is
downward-sloping, and linear if the underlying distribution is Pareto. The lines are a linear fit to the binned
observations. Panel (b) also shows the linear fit among the subset of bins that correspond to the top 10% of
physician earners. Source: Authors’ calculations using Decennial data.

relationship between log income and the log of 1-CDF(income). The slope of the

relationship is the Pareto coefficient α.22 We test this prediction in New York State

(disclosure rules impede testing it at the LMA level). We bin New York’s top decile

of earners into 20 equally-spaced log income bins. Within each bin, we calculate the

share of observations with income in that bin or higher. Figure 2 shows the rela-

tionship between the log income bins and log observation shares. Panel 2a shows the

relationship for the general population and Panel 2b for physicians specifically. The

Pareto fit is excellent for the general population.

For physicians, the distribution is also Pareto in their top 10%, as illustrated by the

dashed line. However, the fit worsens lower in the distribution. The α−1 estimated

on physicians in the top 10% of New York’s overall income distribution (as in our

regression) is higher than when using the top 10% of physicians. Nevertheless, even

when the data are not exactly Pareto, the estimated α−1 is a reasonable measure of

income inequality.

Appendix Figure B.1 shows that, although the estimate of α−1 can be sensitive to

the choice of sample, the change between years—the source of identifying variation

in our regressions—is much less so. Section 5.3 presents robustness checks to ensure

that our results are not driven by deviations from the Pareto distribution.

22With N observations of wages drawn from a Pareto distribution, the expected share of obser-
vations with a value higher than x, Nx/N , is (x/xmin)

−α. This means ln (Nx/N) = −α ln(x) +
α ln(xmin).
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4.3 Empirical strategy

Regression framework.We aim to estimate the causal effect of a change in general

(population-wide) top income inequality in a region s on the change in top income

inequality for a particular occupation o in that region, say, physicians. Let α−1
o,t,s be

top income inequality for occupation o at time t for geographical area s and α−1
−o,t,s be

the corresponding value for the general population in s except for o (both computed

for individuals in the local top 10%). Let γs be a dummy for the geographical area,

γt a time dummy, and Xt,s a vector of controls, including the area’s population and

average income. The regression for occupation o, at the area-by-year level, is:

α−1
o,t,s = γs + γt + βoα

−1
−o,t,s +Xt,sδ + ϵo,t,s. (14)

The coefficient βo measures the inequality spillover. That is, by how much top in-

come inequality for occupation o increases when top income inequality for the general

population increases. We use the Census income data described above to compute

α−1
o,t,s and α

−1
−o,t,s for 1980, 1990, 2000 and 2012. We cluster standard errors by LMA

and weight LMA-years by the number of persons in occupation o (above xmin). With

4 periods and 50 LMAs we have a balanced panel of 200 observations.

Instrument.A natural worry when estimating equation (14) is endogeneity. Even

controlling for LMA and year fixed effects, a positive correlation between general in-

come inequality and inequality for a specific occupation might reflect deregulation, tax

change, or common local economic trends—rather than a causal effect. Our mecha-

nism itself could generate reverse causality: inequality within the outcome occupation

might spill over into other occupations on the right-hand side. And as Section 3.2

explained, unobserved positive correlation between the ability distribution of the oc-

cupation of interest and the general population could lead to a downward bias.

To address these concerns, we use a “shift-share” instrument (Bartik, 1991) based

on the occupational distribution across geographic areas in 1980. We define:

I−o,t,s =
∑
κ∈K−o

ωκ,1980,sα
−1
κ,t,−s, for t ∈ {1980, 1990, 2000, 2012}. (15)

K−o is the set of most important occupations in the top 10% (excluding o), defined

as the union of the 10 most common occupations in the top 10% of each LMA s in

1980. K−o contains around 30 occupations (disclosure rules require rounding to the
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nearest 10). The weight ωκ,1980,s is the share of occupation κ in LMA s’s top 10 in

1980. The shift, α−1
κ,t,−s is the inverse Pareto coefficient for occupation κ in year t for

the entire U.S. excluding LMA s. We estimate equation (14) via 2SLS using I−o,t,s

as an instrument for α−1
−o,t,s. Since K−o does not include all occupations, the weights

do not sum to 1. Following Borusyak, Hull, and Jaravel (2022), we control for the

sum of the excluded weights interacted with year dummies in all specifications. We

explore alternative occupation sets K−o in robustness checks.

The instrument variation is best illustrated by a decomposition of the endogenous

variable, income inequality for the general population. Let O−o,s be the set of all

occupations excluding the occupation of interest o. The estimator of the inverse

Pareto parameter in (13) implies that we can decompose the common estimate of

α−1
−o,t,s for a set of occupations O−o as α−1

−o,t,s =
∑

κ∈O−o
ωκ,t,sα

−1
κ,t,s (where ακ,t,s is

irrelevant if an occupation does not appear in year t). We exploit this to write our

right-hand side measure of inequality as:

α−1
−o,t,s =

∑
κ∈O−o

ωκ,1980,sα
−1
κ,t,−s︸ ︷︷ ︸

National trends

+
∑

κ∈O−o

(
α−1
κ,t,s − α−1

κ,t,−s

)
ωκ,1980,s︸ ︷︷ ︸

Local inequality shocks

+
∑

κ∈O−o

α−1
κ,t,s (ωκ,t,s − ωκ,1980,s)︸ ︷︷ ︸

Changes in occupational composition

,

(16)

which decomposes the change in local inequality into three terms. The first term cap-

tures national trends in occupational income inequality, on which we base our instru-

ment (using the part of the sum associated with occupations inK−o ⊂ O−o).
23 Our IV

estimation therefore only exploits the changes in local income inequality arising from

the 1980 occupational distribution combined with nationwide trends in occupational

inequality. Our instrument relies on national trends that reflect shocks exogenous

to a given LMA—such as globalization, technological change or deregulation—but

which affect LMAs differently depending on occupational composition, leading to a

change in αx in our model. The other two terms in equation (16) capture local LMA

changes: the second term reflects local occupational income inequality relative to U.S.

trends, and the third captures changes in local occupational distribution. Neither can

plausibly be considered exogenous to the occupation of interest o.

We adopt the Goldsmith-Pinkham, Sorkin and Swift (2020) framework for evalu-

23Mazzolari and Ragusa (2013) use a similar approach to instrument for the level of income for
high-earners in cities based on pre-sample city-specific occupational distribution and national trends
in top income growth.
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Table 2: Summary Statistics For Regression Variables

Physicians Dentists Real Estate Agents

Mean SD Mean SD Mean SD N

α−1
o 0.82 0.12 0.67 0.09 0.50 0.07 200

α−1
−o 0.39 0.06 0.40 0.06 0.40 0.06 200

I 0.28 0.02 0.30 0.02 0.30 0.02 200

Notes: Summary statistics for the regression variables. α−1
o and α−1

−o are the inverse Pareto parameters for the
occupation of interest and for the local population excluding the occupation of interest, respectively, in a given
LMAÖyear. Both are based on the top 10% of the wage income distribution in a given LMAÖyear. I is the
instrument: the projected income inequality in a given LMAÖyear based on the 1980 occupational distribution (see
details in text). N is the number of LMA-years.

ating shift-share instruments. They show that a sufficient condition for the validity of

a shift-share instrument is that the original weights are conditionally exogenous. Our

instrument will be valid if the original occupational composition only affects changes

in local top inequality for the occupation of interest through changes in local top in-

come inequality (changes, rather than levels, because we include LMA fixed effects).

One concern would be that occupation composition may also affect changes in average

incomes, which is why we directly control for this channel. Our identification assump-

tion would be violated if, for instance, in areas which initially have more financial

managers, physicians are able to get better access to credit over time, enabling them

to expand their offices, earn higher incomes, and disproportionately so at the top (this

corresponds to an increase in εS in the model of Section 3.3.1 when εαx > 1). We run

robustness checks where we exclude financial managers from the instrument.24 We

discuss our shift-share setting further in Section 5.3 and in Appendix D.2.

Summary statistics for the regression variables.Our first regression results focus on

three occupations for which we expect to see spillovers: physicians, dentists, and real

estate agents. Table 2 presents summary statistics for the main regression variables.

The average inverse Pareto coefficients differ from the ones reported in Table 1 partic-

ularly for physicians because, as discussed above, we compute them for individuals in

the top 10% of the overall local population instead of the top 10% of the occupation.

5 Empirical Spillover Estimates
This section presents our empirical estimates of spillovers across occupations. In

Section 5.1, we first focus on a set of high-earning occupations for which we expect to

24The alternative view on shift-share instruments articulated by Borusyak, Hull and Jaravel
(2022) relies on the exogeneity of the shocks, namely here, trends in occupational inequality. This
assumption is likely violated in our case; inequality trends are likely correlated across occupations
for other reasons than our spillover through consumption mechanism.
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find spillovers: physicians, dentists and real estate agents. Section 5.2 then considers

the 30 most common occupations in the top 10% and demonstrates that spillovers

are consistent with the predictions of our model. Section 5.3 carries out several

robustness checks. Finally, in Section 5.4 we use financial sector deregulation as a

specific exogenous shock to income inequality.

5.1 Physicians, dentists and real estate agents

Our central occupations of interest where we expect spillovers are physicians, dentists,

and real estate agents. Physicians are a major occupation in the top of the U.S. income

distribution (see Appendix Table D.2). They fit our theory well since they provide

a service that is heterogeneous in quality and non-divisible. Dentistry is similar but

with fewer intermediaries and regulations. Real estate agents are also common in the

top of the U.S. income distribution. Real estate services are non-divisible since home

sellers/buyers usually only contract with one real estate agent.25 All three occupations

also primarily serve their local market, a necessary condition for our empirical test.

Physicians.Table 3 presents the estimates of equation (14) for physicians. Column (1)

shows the OLS regression of physicians’ income inequality on general income inequal-

ity including year and LMA fixed effects. We find a coefficient of 0.41. This coefficient

increases slightly in column (2), where we include controls for LMA population and

average wage income among those with positive wage income. Columns (3) and (4)

show the first stage regression. The instrument has a reasonable predictive effect on

the endogenous variable with an F -statistic around 14. Columns (5) and (6) present

IV results: Income inequality from the broader population spills over to physician

income inequality with an estimated coefficient of 1.54 in the model without controls

and 2.29 in the model with controls. Log population has little conditional relation-

ship with physician inequality, whereas log average income predicts lower inequality.

Appendix Figure D.1 visualizes the IV results and demonstrates that they are not

driven by outliers.

The magnitude of the spillover relationship is sensible in light of the CES model

of Section 3.2. To understand the quantitative implications for the overall increase

in physician inequality, we use these estimates and calibrate our model to data from

New York State in Section 6. Alternatively, a model-free approach to interpreting

25Furthermore, the fee structure in real estate is often proportional to housing prices (Miceli,
Pancak and Sirmans, 2007) and the increase in the spread of housing prices is consistent with the
increase in income inequality (Määttänen and Terviö, 2014).
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Table 3: Spillover estimates for Physicians

OLS First Stage IV

Dependent Variable: α−1
o α−1

o α−1
−o α−1

−o α−1
o α−1

o

(1) (2) (3) (4) (5) (6)

α−1
−o 0.41 0.58 1.54 2.29

(0.18) (0.16) (0.74) (0.63)
Ln(Average Income) -0.33 0.06 -0.47

(0.10) (0.04) (0.13)
Ln(Population) -0.03 -0.03 0.03

(0.04) (0.02) (0.04)
I 4.93 4.44

(1.29) (1.22)

LMA FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
(1−

∑
κ∈K−o

ωκ)× Year FE Yes Yes Yes Yes Yes Yes

N 200 200 200 200 200 200
F-Statistic 14.6 13.21

Note: This table shows OLS and IV regressions of local top income inequality among physicians on top income
inequality in the local population. Top income inequality for physicians is measured by the inverse Pareto parameter

α−1
o estimated in each LMA among physicians in the top 10% of the local income distribution. Local income inequality

is measured by the the inverse Pareto parameter α−1
−o for the local non-physician in the top 10% of the local income

distribution. I is our instrument and captures the projected income inequality by interacting local occupational
composition with national occupation trends in inverse Pareto parameters (see details in text). Column (1) shows the
OLS relationship controlling for LMA and year fixed effects and for the share of the LMA’s upper tail in 1980 that
is not included in the instrument occupations interacted with year indicators. Column (2) adds controls for average
income and population among persons with positive income. Columns (3) and (4) show the first stage regressions.
Columns (5) and (6) show the IV regressions. N is the number of observations. Observations are weighted by the
number of physicians in the top 10% of the local income distribution.

the magnitude of the spillover estimates is to express them in terms of standard

deviations (SD) of each variable (as reported in Table 2). A 1 SD increase in local

income inequality increases local physicians’ income inequality by 0.8 and 1.1 SDs

(from estimates without or with controls, respectively). So the spillover mechanism

explains a sizable share of variation in regional physician inequality.

Dentists and real estate agents.We show the corresponding results for dentists and

real estate agents in Table 4. In both cases, we estimate spillover coefficients greater

than 1 in line with the CES model. The IV coefficients with controls are 2.27 for den-

tists, which is very similar to the corresponding coefficient for physicians, and 1.71 for

real estate agents, which is bit smaller. In both cases, a 1 standard deviation increase

in local income inequality leads to a 1.5 standard deviation increase in occupational

inequality—so the spillover mechanism can again account for a sizable share of the

variation in local occupational inequality.

Relationship between IV and OLS.For physicians and dentists, the IV coefficients

are much higher than the OLS correlations. What may explain this? First, the CES

model of Section 3.2 predicts that an increase in doctors’ ability at the top, α−1
z ,

which could be interpreted as skill-augmenting technical change for doctors, actually
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Table 4: Spillover estimates for Dentists and Real Estate Agents

Dentists Real Estate Agents

OLS IV OLS IV

α−1
−o 1.08 1.09 2.29 2.27 1.43 1.43 1.69 1.71

(0.33) (0.34) (0.71) (0.93) (0.21) (0.21) (0.62) (0.65)

Ln(Avg. Income) 0.08 0.00 0.01 -0.01
(0.12) (0.14) (0.09) (0.09)

Ln(Pop.) 0.04 0.08 0.02 0.02
(0.05) (0.08) (0.03) (0.03)

N 200 200 200 200 200 200 200 200
F-Statistic 23.63 13.36 12.72 7.124

Notes: This table mimics Table 3, except rather than physicians as the outcome occupation, the outcome occupations
are dentists and real estate agents, respectively.

reduces top income inequality if the elasticity of substitution ε < 1. That is, technical

change that may have increased income inequality for most occupations may actually

decrease income inequality for physicians and dentists, countering the spillover effect.

This, in turn, implies that a positive unobserved correlation between inequality in

local doctors’ ability and local consumers’ ability would bias the OLS coefficient

downward.26 We discuss this further using our calibrated model in Section 6. Second,

there are numerous potential omitted variables. For example, more unequal places

might have higher taxes and spend more public money on health care. This would

support the incomes of worse-off physicians and bias the OLS coefficient downward.

Third, due to sampling noise, we estimate inequality in the general population with

some error which we expect to bias downward the OLS estimate. For real estate

agents, the gap between OLS and IV is much smaller, which in the framework of

the CES model, is consistent with a higher elasticity of substitution between the

non-divisible service and other goods, ε, and with a smaller spillover coefficient.27

5.2 Other occupations

We next analyze spillovers for a broader set of occupations. Since Figure 1a shows

that rising within-occupation inequality primarily affects the top of the income dis-

tribution, we focus on high-earning occupations. First, as a placebo test, we estimate

spillover coefficients for three occupations that do not fit our model: financial man-

26For instance, using (10), the ratio Cov
(
α−1
z , α−1

x

)
/Var

(
α−1
x

)
would have to be 1.3 to account

for the entire gap between OLS and IV coefficients in columns (2) and (6) in Table 3.
27Proposition 3 also showed that the slope of the Engel curve is less steep when ε is lower. In

line with a higher ε for housing than medical services, Figure C.1 implies an elasticity of the Engel
curve of around 0.29 for medical expenditures, while for real estate, Zabel (2004) finds Engel curve
elasticities of 0.64–0.70 for high-income families.
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agers, managers excluding real estate, and engineers. We then examine the 30 most

common occupations in the top 10% of the income distribution. We find that (a)

spillovers concentrate in occupations fitting our model and (b) spillover coefficients

correlate with occupational traits indicating local service provision. Finally, we also

find spillovers for a broader class of medical and related occupations that are less

common at the top of the income distribution.

Table 5: Spillover estimates for Financial managers, Managers and Engineers

Financial Managers Managers Excl. Real Estate Engineers

OLS IV OLS IV OLS IV

α−1
−o 1.63 1.31 1.12 0.77 0.22 0.28 0.05 -0.02 0.32 0.45 -0.13 -0.09

(0.47) (0.35) (0.97) (0.92) (0.09) (0.09) (0.12) (0.15) (0.11) (0.13) (0.26) (0.30)

Ln(Avg. Inc.) 0.25 0.29 0.04 0.06 -0.05 -0.02
(0.14) (0.16) (0.03) (0.03) (0.04) (0.05)

Ln(Pop.) -0.14 -0.16 0.05 0.03 0.07 0.05
(0.05) (0.07) (0.01) (0.01) (0.02) (0.02)

N 200 200 200 200 200 200 200 200 200 200 200 200
F-Statistic 19.92 11.22 22.15 16.49 23.97 27.91

Notes: This table shows OLS and IV regressions analogously to Table 3 but for occupations for which we do no
predict spillovers. Columns (1)-(4) look at financial managers, Columns (5)-(8) at managers excluding real estate,
and Columns (9)-(12) at engineers. N is the number of observations.

Placebo occupations.Financial managers, managers (excluding those in real estate),

and engineers serve as useful placebos. Workers in these occupations generally do

not produce a non-divisible good or service for the local population. Managers and

engineers work for firms that produce a variety of goods and services for both the local

and national markets.28 Likewise, financial managers also work for firms: they “plan,

direct, or coordinate accounting, investing, banking, insurance, securities, and other

financial activities of a branch, office, or department of an establishment” according

to the Standard Occupational Classification scheme.

Table 5 reports the OLS and IV results for these three occupations. The OLS

estimates are significant throughout but the IV coefficients are statistically indistin-

guishable from zero and smaller than those for physicians, dentists and real estate

agents. The positive OLS estimates and non-significant IV estimates demonstrate

that spurious correlation between general inequality and occupational inequality at

the local level is likely but that our instrument addresses this concern.

Largest occupations in the top 10% of the income distribution.Table 6 reports the

results for the most common 30 occupations in the top 10% of the income distri-

28An assignment mechanism may exist for managers but then managers’ income inequality would
reflect firm size inequality (as in Gabaix and Landier, 2008) rather than local income inequality.
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Table 6: Spillover estimates for a broad set of occupations

OLS OLS SE IV IV SE F stat t stat N Small

Accountants and auditors 0.90*** 0.12 0.25 0.39 13.26 0.63 0
Airplane pilots and navigators 0.66*** 0.25 3.54** 1.73 6.88 2.04 40
Chief executives, public admin., and legislators 0.77*** 0.20 0.30 0.60 12.21 0.50 86
Computer programmers 0.43* 0.23 0.24 0.43 16.87 0.55 16
Computer systems analysts and computer scientists 0.77*** 0.23 0.70** 0.35 21.87 1.97 7
Dentists 1.09*** 0.34 2.27** 0.93 13.36 2.45 13
Driver/sales workers and truck Drivers 0.84*** 0.25 1.62 1.12 4.17 1.45 17
Electricians 0.28 0.25 -0.17 1.06 4.44 -0.16 56
Engineers 0.45*** 0.13 -0.09 0.30 27.91 -0.30 0
Financial managers 1.31*** 0.35 0.77 0.92 11.22 0.84 0
Financial service sales occupations 1.86*** 0.30 1.11 1.14 6.07 0.97 21
Insurance sales occupations 1.25*** 0.17 1.08* 0.62 8.07 1.73 2
Lawyers and judges 0.56** 0.27 -0.33 0.64 14.21 -0.52 0
Managers of properties and real estate 0.70** 0.31 1.32* 0.76 15.80 1.75 36
Managers, Excl. Real Estate 0.28*** 0.09 -0.02 0.15 16.49 -0.10 0
Office supervisors 1.00*** 0.29 1.41*** 0.30 15.91 4.70 0
Other financial specialists 0.82*** 0.28 0.32 0.81 15.49 0.40 0
Personnel, HR, training, and labor rel. specialists 0.67*** 0.23 0.82 0.60 9.58 1.36 2
Pharmacists -0.16 0.26 -0.49 0.83 25.01 -0.60 20
Physicians 0.58*** 0.16 2.29*** 0.63 13.21 3.63 0
Police and detectives, public service 0.47*** 0.10 0.30 0.28 27.29 1.08 47
Primary/Secondary School Teachers 0.13 0.28 -0.44 0.64 7.98 -0.68 5
Production supervisors or foremen 0.63*** 0.18 -0.09 0.75 9.93 -0.12 2
Real estate sales occupations 1.43*** 0.21 1.71*** 0.65 7.12 2.64 6
Registered nurses 0.16 0.21 0.71 0.53 27.07 1.36 28
Sales occupations and sales representatives 0.51*** 0.11 0.28 0.23 8.03 1.20 0
Sales supervisors and proprietors 0.60*** 0.12 0.53 0.43 20.95 1.23 0
Sales workers 0.69*** 0.17 0.12 0.43 10.03 0.28 0
Subject instructors, college 0.57*** 0.11 -0.04 0.28 19.98 -0.15 0
Supervisors of construction work 0.73*** 0.27 1.27 1.05 6.41 1.21 7

Notes: This table shows the OLS and IV coefficients for regressions of local top income inequality for some occupations
on top income inequality in the local population excluding that occupation. The occupations shown are the 30 most
common occupations in the top 10% of the income distribution. Each row corresponds to the regressions for a given
occupation. The variables are defined analogously to Table 3 and estimates are from the specification with population
and average income controls. Columns (1) and (2) show the OLS coefficient and standard error. Columns (3) and
(4) shows the IV coefficient and standard error. Column (5) is the F statistic for the instrument, column (6) the IV
coefficient t statistic. The final column shows the number of LMA-years in which there were fewer than 20 persons
used to construct the outcome variable. The total number of LMA-years is 200. *: p<0.1, **: p<0.05, ***: p<0.01.

bution, including the 6 already considered. Whereas most of the occupations have a

positive OLS coefficient, the IV is positive only for a small subset. Besides physicians,

dentists and real estate agents, we see significant (with p < 0.1) positive coefficients

for managers of properties and real estate, likely reflecting the same mechanism as

for real estate agents, and for insurance sales specialists. The latter often sell their

products directly to individuals and, in the occupation characteristics used below,

they rank high for customer service, working with the public, and non-tradeability.

Therefore, these two occupations plausibly fit our spillover mechanism. We also find

significant relationships for pilots, computer system analysts, and office supervisors,

which we view as false positives; with 25 placebo occupations, we would expect 2.5

false positives at p < 0.1. Note that for pilots, we have fewer than 20 observations to

compute income inequality for 20% of the LMA-years.
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The remaining occupations can be classified in three groups. First, those occu-

pations for which our theory does not apply—e.g. the placebo occupations already

mentioned, computer programmers, and production supervisors. Second, occupations

for which our theory may apply but at the national level (such as college professors).

Third, occupations (for instance“lawyers and judges”) that include both subcategories

where our theory should apply (personal attorneys) and where it should not (corpo-

rate lawyers). Similarly, financial sales occupations cover both individuals working

for firms, for whom our theory may not apply, and personal finance managers for

which our theory is more likely to apply, albeit perhaps at the national level.

Relationship with occupation characteristics.Our model predicts a higher local spillover

coefficient for occupations where production has to be local, and for those that directly

serve the public. To test these predictions, we correlate the IV spillover coefficients

with these occupational traits. To quantify local production, we treat Blinder’s (2009)

measure of offshorability as an (inverse) measure of the extent to which an occupa-

tion serves the local market. It codes 18 out of the the 30 occupations as completely

not offshoreable. To quantify direct public interaction, we rely on measures from

the Occupational Information Network (O*NET) of the level of customer service and

working with the public. Appendix B.3 gives further details.

Since spillover estimates have varying precision, we divide them by their standard

errors; that is, we correlate the t-statistics with occupational traits. This is equivalent

to a regression of the spillover coefficient on the occupational trait weighted by the

inverse standard error of the spillover coefficient. Figure 3 shows the results.

Consistent with our model, Panel 3a shows a negative relationship between the

spillover and offshorability (p = 0.07). Our three focal occupations are non-offshoreable

and the non-offshoreable group’s average spillover t-statistic is 1.36 compared to only

0.57 in the (at least partly) offshoreable occupations — and this difference is signifi-

cant at p < 0.1. Panels 3b and 3c show positive relationships between the spillover and

measures of customer service and working with the public (p < 0.01 and p = 0.11).

Appendix Table D.3 presents the corresponding regressions, along with the “impor-

tance” (rather than“level”) of the customer service and working with public variables,

both of which show statistically significant positive relationships.

These patterns support our model: With a few exceptions, we only observe local

spillovers for occupations that fit the model’s predictions of delivering non-divisible

goods or services of heterogeneous quality in the local market. These relationships
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also buttress our identification strategy; most potential omitted variables would not

drive spillover effects for specifically this type of occupations. In particular, neither

“keeping up with the Joneses” (Bertrand and Morse, 2016) nor rich individuals sorting

into high-amenity locations would imply this spillover coefficient pattern.

Figure 3: IV estimates and occupational characteristics.
(a) Offshorability
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(c) Work w. Public
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Notes: This figure shows the relationship between the t-stat of the spillover coefficients shown in Table 6 and three
occupation characteristics: a measure of offshorability from Blinder (2009) and two measures from O*NET: Level
of “Customer service and personal service” from Knowledge Requirements and level of “Performing for or working
directly with the public” from Work Activities. The measures are rescaled as percentiles.

Other medical occupations less common in the top.While within-occupation inequal-

ity primarily affects top earners, our model does not require occupations receiving

spillovers to be common in the top. We test this using four health-related occupation

groups less common in the top than physicians or dentists: “veterinarians”, “physi-

cal and occupational therapists”, “psychologists”, and “optometrists, podiatrists, and

other health-diagnosing occupations”. A stacked regression across these groups (al-

lowing for group-specific LMA and year fixed effects) reveals positive spillover effects

approximately half the magnitude of our focal occupations (Table 7). Due to sample

size limitations, we also present results restricted to the 30 most populous LMAs.29

Taking stock.To sum up, we find evidence of spillovers for physicians, dentists, and

real estate agents, which together account for a significant share of individuals in the

top of the income distribution: 15.8% of the top 1% and 5% of the top 10%. We view

this as a lower bound on the applicability of our theory. First, spillovers for occupa-

tions with tradable output occur nationally, rather than locally, and therefore would

not be captured by our empirical strategy. Second, some occupations common in the

top 10%, such as personal lawyers or personal wealth managers, fit the requirements

of our model (heterogeneous and non-divisible output) but are not easily identified

in Census occupation coding. Moreover, spillovers in theory need not be restricted to

occupations in the upper tail, such as we show with other medical occupations. With

29When looking at all 50 MSAs, around 60% of observations have fewer than 20 observations
included in our calculation of top income inequality. In the second panel, this falls to 44%.
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that said, the rise in within-occupation inequality is concentrated at the top of the

income distribution, suggesting that spillovers may be particularly prominent (and

empirically identifiable) among high earning occupations.

Table 7: Spillover estimates for broader medical occupations

50 Most Populous LMAs 30 Most Populous LMAs

OLS First Stage IV OLS First Stage IV
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

α−1
−o 0.58 0.54 1.02 1.16 0.05 -0.02 1.18 1.26

(0.17) (0.17) (0.57) (0.56) (0.19) (0.21) (0.51) (0.55)
Ln(Avg. Inc) 0.00 0.05 -0.05 0.02 0.04 -0.06

(0.07) (0.04) (0.08) (0.06) (0.05) (0.08)
Ln(Pop.) -0.05 -0.03 -0.03 -0.05 -0.03 0.00

(0.03) (0.02) (0.03) (0.04) (0.02) (0.04)
I 4.09 3.97 5.17 4.80

(0.80) (0.99) (1.17) (1.32)

N 800 800 800 800 800 800 500 500 500 500 500 500
F Statistic 26.15 15.99 19.35 13.03

Notes: This table shows regression estimates that “stack” four health-related occupations: Veterinarians, Physical
and Occupational Therapists, Psychologists, and the combination of Optometrists, Podiatrists and “Other Health
Diagnosing Occupations”. Stacking means that for each occupations, we calculate outcome inequality, explanatory
inequality, and the instrument. We then stack the data sets together, and run our baseline regression with LMA and
Year FEs interacted with indicators for the outcome occupation. N is the number of observations rounded to the
nearest integer divisible by 50 as required by disclosure rules.

5.3 Robustness checks

We now discuss robustness checks to alternative hypotheses, specification choices, and

inference methods, with corresponding tables in Appendix D.2.

Earned income.Gottlieb et al. (2025) show that business income is sizable among

top physicians. The Census data report wage income, business income, and capital

income; we define“earned income”as the sum of the first two. We calculate top income

inequality using earned income for physicians, dentists and real estate agents in the

same manner as for wage income and replace the dependent variable. We leave the

instrument and the independent variables unchanged. The IV coefficients, reported

in Appendix Table D.4, remain similar to that of Table 3, though the coefficient for

real estate agents declines by around 40%.

Occupational and geographical mobility. Section 3.3 showed theoretically that our

spillover mechanism is robust to allowing for either occupational or geographical mo-

bility. We now investigate these issues empirically. First, we restrict attention to

physicians that are less occupationally or geographically mobile. Given the cost and

time required to enter the medical profession, those older than 35 will have decided

to become a medical doctor more than 10 years ago, and cannot easily respond to

economic trends over the preceding 10 years. We therefore estimate a regression that
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restricts attention to doctors older than 35. Similarly for geographical mobility, we

consider doctors who have not moved within the past 5 years. Appendix Table D.5

columns (1) and (2) report the results: in both cases, the IV coefficients are a bit

higher at 3.1 and 3.3, respectively.

Second, we directly study entry by computing the employment share of the oc-

cupation of interest. This measure can vary because of geographical or occupational

mobility. In Appendix Table D.6, we run two sets of regressions, both using our stan-

dard IV specification: First, we use employment share as the dependent variable and

show that rising inequality does to some extent encourage the entry of new physi-

cians. Nevertheless, when we include it as an additional control in our standard IV

regressions with inequality as the outcome we find that our spillover coefficient is vir-

tually unchanged. This is not surprising as entry along the entire ability distribution

of physicians would leave physician inequality unchanged while decreasing their mean

income. We perform the same analysis with dentists and real estate agents and find

that the inclusion of the employment share leaves the spillover coefficient basically

unchanged but marginally reduces precision for real estate agents (p = 0.11).

Scale.Our theory emphasizes the importance of price inequality in determining doc-

tors’ income inequality. Section 3.3.1 demonstrates that our spillover mechanism

remains robust even when production scalability is introduced, allowing consumer in-

equality to raise top performers’ relative scale. Yet, technological change that affects

the (intensive margin) supply elasticity, εS, could affect doctors’ income inequality,

potentially biasing our IV estimates if correlated with the instrument. Census data

lacks direct measures of physician scale. In Appendix C.3, we use data from the

National Ambulatory Medical Care Survey to build a proxy for physicians’ scale and

find that there is no trend in the standard deviation of that measure between 1992

and 2011. This suggests that, at the aggregate level, there has not been a large shock

to εS.30 Similarly, for real estate agents, Gilbukh and Goldsmith-Pinkham (2024)

30Further, recall that in our model, an increase in εS increases doctors’ top income inequality
if and only if εαx > 1. We can perform a back-of-the-envelope computation to check whether this
condition holds. Using (12), we get

βIV =
dα−1

w

dα−1
x

=
εS
(
1− α−1

w

)
+ 1

εSα−1
x + ε

.

Using the average values in Table 1 for α−1
w and α−1

x , column (6) of Table 3 for βIV , and εs = 0.4
from Gottlieb et al. (2025), we get ε = 0.398, so εαx = 1.02. Taking our estimates and model
seriously, parameters are very near the values where top income inequality is independent of εS .
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find that the share of transactions executed by high commission rate agents has been

relatively constant since 2000 (their Appendix Figures F3 and F4).

An increase in dentists’ scale is often associated with increased specialization. We

proxy for this phenomenon by computing the ratio of dental hygienists to dentists in

an LMA. We add this control and our main coefficient is nearly unchanged (Appendix

Table D.5, column (4))—suggesting again that a shock to εS is not driving our results.

Medical specialties. Since pay varies across medical specialties and our physician cate-

gory combines all specialties, compositional effects could influence results. We address

this by controlling for specialty shares (detailed in Appendix D.2). As Appendix Table

D.5 column (3) shows, the IV coefficient remains virtually unchanged.

Deviations from Pareto distribution.To ensure enough observations and a consistent

population slice across occupations, we calculate α−1
o using individuals from the occu-

pation within the top 10% of the general local population. LMA Ö year Ö occupation

samples are not necessarily Pareto, but this does not undermine identification. First,

α−1
o is an inequality measure regardless of distributional form. Our regression coeffi-

cient identifies spillovers for that inequality measure provided that our instrument is

exogenous—though the IV coefficient may not exactly identify 1/ε. Section 6 shows

how to calibrate 1/ε using the spillover estimate. Second, as we discussed previously,

although α−1
o depends somewhat on the cutoff xmin, changes in α−1

o , which we use

for identification, are much less sensitive. Third, in Appendix Table D.7, for our

three focal occupations and the three main “placebo” occupations, we control for the

share of the occupation in the top 10% of the general population, with little effect

on results. Finally, Appendix Table D.8 shows that calculating α−1
o using only the

top 10% of physicians yields a spillover coefficient of 1 (p = 0.12), or 1.23 (p < 0.05)

when restricted to the 30 most populous LMAs to reduce measurement noise.31

Other sample restrictions.Appendix Table D.9 reports robustness to other sample

choices. First, we use the top 5% of the general population instead of the top 10%.

Second, we use 30 or 70 LMAs rather than 50. Third, we construct the instrument

using the union of the 13 or 7 (rather than 10) biggest occupations in each LMA.

Results are robust to these changes, with one exception: using the 5% cutoff for real

agents and dentists yields qualitatively similar but less precise coefficients (p < 0.15),

31In unreported regressions, we ran the same exercise for real estate agents and dentists. We did
not find significant spillovers, but note that in both cases we have fewer observations (and much
fewer for dentists) than for doctors or for the baseline specification.
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consistent with having fewer individuals to calculate inequality.

Shift-share robustness checks. Since our identification relies on the exogeneity of the

occupational shares, we follow Goldsmith-Pinkham et al. (2020) and show the 16

largest (in absolute terms) Rotemberg weights in Appendix Table D.10. The three

occupations with the largest weights are Financial Service Sales (0.35), Financial

Managers (0.22), and Airplane Pilots and Navigators (0.21). We exclude, in turn,

the five occupations with the highest Rotemberg weight from the IV in our baseline

regression for physicians. Appendix Table D.11 reports the results and shows that

the spillover coefficient is very stable.

Alternative inference.Finally, we report alternative inference methods in Appendix

Table D.12. First, we compute Adão, Kolesár and Morales (2019) standard errors

that account for potential correlation of residual errors across LMAs with similar

occupational composition. Second, we calculate confidence intervals following Lee

et al. (2023) that are valid when the instrument is weak. Neither approach changes

the conclusions. In fact, the latter confidence intervals are sometimes shorter than

under usual inference, which Lee et al. (2023) find is common in many applications.

5.4 Using financial deregulation as an instrument

This section investigates spillovers from one specific shock to income inequality: the

substantial financial deregulation from the 1970s–1990s.32 Systematically identifying

the source of the original shocks is beyond our scope, but we consider this one in par-

ticular since finance occupations are the most influential component of the shift-share

instrument according to Rotemberg weights. Financial deregulation was followed by

substantial increases in average income for financial occupations (Philippon and Resh-

eff, 2012). We show that it was also associated with rising income inequality. We use

this policy variation, combined with varying concentrations of finance occupations

across LMAs, as an exogenous source of variation in local inequality. This exercise

requires extending our Census data back to 1960 so we have a pre-treatment period.33

32Financial deregulation broadly had three components, roughly in this chronological order: re-
moval of restrictions on intra-state branching; removal of restrictions on inter-state banking; erosion
of regulatory barriers that separated insurance companies, commercial banking, and investment
banks. Many states started intra-state deregulation in the 1970s, most states then experienced
inter-state deregulation during the 1980s and early 1990s (Hoffmann and Stewen, 2020). Removal of
barriers between commercial banking, investment banking, and insurance occurred throughout the
1990s, culminating in 1999 with the repeal of the Glass-Steagal Act.

33Census years 1960 and 1970 contain data quality inconsistencies. For instance, in 1960, some
data was lost and later restored, and different county ID schemes were used. In 1970, mail-in forms
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Let ωf,1970,s denote the share of an LMA’s employed population that works in a

finance occupation in 1970, defined as: (i) Financial Managers, (ii) Financial Service

and Sales Occupations, and (iii) Other Financial Specialists. The share serves as a

measure of exposure to deregulation. We first estimate a continuous difference-in-

difference to measure the differential changes in local income inequality (excluding

doctors) between areas with high vs. low finance occupation shares relative to 1970:

α−1
−o,t,s = θs + θt +

∑
h̸=1970

θo,h1h=tωf,1970 + vo,t,s, (17)

where θo,h capture the effect of interest, and θs and θt are LMA and year fixed effects.

Two identification assumptions are required. First, absent deregulation, areas

with more finance would have experienced similar trends in income inequality as areas

with less finance. Second, we require that any direct effect of finance deregulation on

physician inequality is uncorrelated with ωf,1970,s. To illustrate, consider a scenario

where deregulation improved physicians’ access to credit, which in turn increased

physician income inequality. Our identification requires this effect to be uniform

across LMAs. If inter-state banking deregulation expanded physicians’ credit access

more in Columbus than in New York, our spillover estimates would be biased.34

Figure 4a visualizes the first stage by plotting estimates of θo,h. These indicate that

consumers’ inequality rose more from 1970 to 2000 in areas that had higher finance

shares in 1970. A 10 percentage point higher share of people working in finance in

1970 predicts a 0.105 increase in α−1 for the general population by 1980 and a 0.29

increase by 2000. Panels (b)-(d) plot the reduced form regressions where the outcome

in (17) is replaced with income inequality among physicians, dentists, or real estate

agents. The finance share predicts changes for physicians and dentists and the reduced

form coefficients’ pattern approximately tracks the first stage coefficients in Panel (a).

One can back-out an implicit spillover by dividing the reduced form by the first stage.

For doctors in 2000, for example, the implied spillover coefficient is 5.26/2.82 = 1.87,

similar to the main spillover estimates in the shift-share approach. The same exercise

for dentists gives a spillover coefficient of 1.39—a bit lower than our main estimate.

were introduced for urban areas, and by 1980, nearly all enumeration took the modern form of
mailed questionnaires. This motivates our focus on 1980 and later in the main analysis.

34Recall that our spillover estimates are largely unchanged when we remove each of the financial
occupations (Appendix Table D.11), so our main results are unlikely to suffer from such a bias.
Moreover, such a bias could not give rise to the systematic relationship between spillover coefficients
and occupation characteristics shown in Figure 3.
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Figure 4: Finance Deregulation Reduced Form
(a) First Stage
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Notes: For our baseline set of LMAs, we calculate the share of their employed population that works in a fi-
nance occupation as of 1970: (i) Financial Managers, (ii) Financial Service and Sales Occupations, and (iii)

Other Financial Specialists. Denote that share ωf,s,t. Panel (a) shows estimates of θo,h from α−1
−o,t,s =

θs + θt +
∑

h ̸=1970 θo,hωf,1970,s1{h = t} + vo,t,s where o is physicians. The “with controls” version adds

ln(population) and ln(average income) controls. Panels (b)-(d) show reduced form estimates from α−1
o,t,s = πs +

πt +
∑

h ̸=1970 πo,hωf,1970,s1h=t + eo,t,s, where the outcome is income inequality among physicians, dentists, real

estate agents, respectively
”
πt and πs are year and LMA fixed effects, and πo,h are effects of financial deregulation

based on pre-existing finance concentrations (ωf,1970,s). 90% confidence intervals are shown.

These results offer supportive evidence for our main shift-share strategy for doctors

and dentists, though the estimates for real estate agents are insignificant.

6 Quantitative Investigation of the Spillover Mechanism
Our theory establishes that changes in consumers’ income inequality translate into

changes in doctors’ income inequality, particularly in the tail of the distribution. In

this section, we solve our model numerically to analyze how these spillovers affect the

entire distribution of doctors’ incomes and quantify the welfare implications. We use

income distributions for both doctors and non-doctors (whom we call “consumers”)

in New York State for 1980 and 2012.35 This calibration serves three purposes. First,

we solve for the endogenous response of doctors’ income distribution to the observed

change in consumers’ income between 1980 and 2012, revealing that our model largely

35This exercise is most sensible within one geographical market. Disclosure requirements do not
permit us to extract data for a specific LMA, so we use New York State instead of New York City.
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reproduces the observed change in doctors’ distribution over this period. Second, we

quantify the importance of the spillover mechanism in driving income inequality at the

top of the distribution. Third, we quantify how much spillovers dampen the increase

in welfare inequality relative to income inequality for the consumers. Appendix E

provides details on the data preparation and calibration procedure.

Data and calibration approach.We observe four empirical income distributions for

New York State: doctors and consumers for both 1980 and 2012 (inflation-adjusted to

2000 dollars). We drop doctors with medical resident-level earnings and the lowest-

earning 10% of consumers. We rescale income values by the lowest consumer income

in 1980. For each distribution, we fit a flexible kernel to the bottom 90% and a Pareto

tail on the top 10%, with the parameter α−1 estimated from the same top 10%. Table

8 presents the α−1estimates for all four distributions.

Our calibration procedure focuses on matching the 2012 distributions. We then

replace the 2012 consumer income distribution with the 1980 distribution and com-

pute the resulting physician income distribution implied by the model. This allows

us to assess how physician income inequality changed between 1980 and 2012 due to

spillovers, taking as given changes in doctors’ ability distribution. We use the version

of our model from Section 3.2 with CES preferences and where both consumer income

and doctor ability distributions are only restricted to be Pareto in the tail. This more

flexible specification allows us to match the full income distribution rather than just

its tail behavior. We allow the minimum income of doctors xdrmin to differ from that

of consumers to match the significantly higher income of doctors.

While we observe the consumer income distribution, doctors’ ability distribution

is unobserved and must be calibrated. Our model has four key parameters beyond

this ability distribution: (1) the number of patients a doctor can treat, λ; (2) the

minimum income of doctors, xdrmin; (3) the preference weight on medical services, β;

and (4) the elasticity of substitution between medical services and other goods, ε.36

We set λ = 175 to match the observed fraction of doctors in New York State in 2012

(excluding residents), and xdrmin to match doctors’ minimum income. The elasticity

parameter ε is particularly important, since lower values strengthen spillovers. We

set ε = 0.35 in the calibration which, we demonstrate below, replicates a spillover

36µ measures the mass of potential doctors and cannot be identified separately from Fz(z) except
to ensure that there is a sufficient number of doctors to treat all µλ > 1.
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Table 8: Empirical, fixed and calibrated parameters for 2012

Year α−1 (drs) α−1 (cons) ε α−1
z λ β log(xdrmin)

1980 0.32 0.34 0.35 0.51 175 0.01 1.92
2012 0.42 0.48 0.35 0.51 175 0.01 2.01

Note: α−1 for doctors and consumers is estimated on the top 10% of the corresponding empirical distributions. ε is
set exogenously (see text). λ is chosen to fit the number of doctors in New York State in 2012. log(xdr

min) is set to the
minimum income of doctors and is scaled by lowest income of consumers in 1980. β is calibrated along with the
ability distribution Fz(z) (including tail α−1

z ) to fit the empirical distribution of doctors in 2012. The calibrated
values of ε, α−1

z , λ and β are kept fixed at 2012 values for 1980.

of around 1.5 as in the regression without controls.37 This leaves us Fz(z) and β to

calibrate to match doctors’ observed 2012 income distribution. To compute doctors’

predicted 1980 income distribution, we keep the calibrated parameters fixed while

substituting the 1980 consumer income distribution and xdrmin value.

Results.Figure 5 shows the main calibration results. Panel (a) presents smoothed

consumer income distributions in 1980 and 2012. New York State follows the national

pattern in Figure 1; income at the 90th percentile rose by 0.40 log points, with

smaller increases at lower percentiles. Panel (b) shows the corresponding distributions

for doctors; income growth was similarly higher at upper percentiles of the doctor

distribution, in addition around 80 percent of doctors (post medical residency) fall in

the top 10 percent of the general income distribution. The 2012 predicted distribution

is visually indistinguishable from the empirical one.

The solid black line in Panel (b) presents our model’s prediction for the 1980

doctor income distribution, using parameters calibrated to 2012 data while changing

only the consumer income distribution and xdrmin.
38 Using this model, we quantify the

spillover coefficient as the ratio of changes in α−1 between consumers and doctors,

akin to our regressions. Table 8 shows a change in α−1 of 0.14 for consumers and

Appendix Figure E.3 shows a change of 0.19 for the doctors using the set of doctors in

the top 10% of the overall distribution, implying a spillover coefficient of 1.38. Using

only the top 10% of doctors we get a similar coefficient of 1.56, both in line with the

spillover coefficient without controls in Table 3. The theory replicates the empirical

finding of Appendix Figure B.1 that, although the estimate of α−1 can be sensitive

to the choice of sample, the difference between periods is much less so.

Our model is calibrated to the IV spillover coefficient from our panel regressions,

37At first glance, the empirical results in Section 5 along with Proposition 3 would suggest values
between ε = 1/2.29 = 0.44 (with controls) and ε = 1/1.54 = 0.65 (without controls). However, since
we do not estimate α−1 on the extreme tail, the regression-based spillovers somewhat overstate ε.

38Recall that xdr
min is pinned down by the lowest income of doctors. Whether we fix xdr

min or
change it in 1980 only impacts the very bottom of the predicted distribution
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Figure 5: CDFs of income for consumers and physicians in New York State
(a) Consumer income

distribution
(b) Doctor income

distribution
(c) Change in Doctors

income

Notes: Panel (a) is the consumers’ income distribution. Panel (b) shows the empirical distribution of doctors in 1980
and 2012. Parameters are calibrated to match 2012 exactly. “Predicted 1980” uses these parameters to predict the
distribution in 1980. Panel (c): Empirical and predicted changes in log income for doctors along the percentile of
doctors’ income distribution. All values are normalized by the lowest consumer income in 1980.

and does not target actual changes in physicians’ income distribution in New York.

Nevertheless, Figure 1b shows that the shift in consumers’ income alone in our model

replicates well the overall empirical shift in doctors’ income distribution, though it

somewhat over-predicts changes at the very top and under-predicts changes in the

middle. Panel (c) makes this comparison explicit by plotting the log income difference

between 2012 and 1980 at each percentile of the doctor distribution. At the median,

our model predicts an increase of 0.28 log points compared to the empirical increase

of 0.35, while for the 95th percentile, it predicts 0.57 versus the observed 0.51.

This pattern—where our model over-predicts increases at the top—is consistent

with doctors’ ability becoming more unequal between 1980 and 2012, as discussed in

Section 3.2 after Proposition 3. With complementarity between medical services and

other goods (ε < 1), a rise in doctors’ ability inequality (higher α−1
z ) dampens their

income inequality. Appendix Figure E.2 shows the 1980 and 2012 doctors’ ability

distributions necessary to perfectly match both years’ doctor income distributions.

The 2012 distribution has a fatter tail: α−1
z needs to rise from 0.35 to 0.51—a change

comparable to the 0.14 increase in consumers’ α−1.

Spillover effects and within-top income inequality.We next analyze how spillovers

increase top income inequality for the combined income distribution (doctors plus

consumers). We calculate the empirical share of income within the top 10% going to

various subgroups, as shown in Table 9. In 2012, the top 10% earned 34.4% of total

income, with the top 1% capturing 29.9% of income within the top 10%.

We then compare two scenarios for 1980: our baseline model with spillovers and a

counterfactual where we keep the shape of doctors’ income distribution fixed at 2012
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Table 9: Spillover effects and within-top income inequality

Doctors:
4.6% of top 10%

Doctors + others:
9.2% of top 10%

Income 2012 ∆ (Spill) ∆ (Mean) ∆ (Spill) ∆ (Mean)
Group (%) percentage points percentage points

Top 10% 34.4 8.1 7.9 8.1 7.7
Top 5% / top 10% 69.7 6.1 5.6 5.8 4.9
Top 1% / top 10% 29.9 8.1 7.0 8.0 6.0
Top 0.1% / top 10% 8.9 4.3 3.6 4.4 3.1

Notes: Income inequality measures are for the whole distribution (consumers + doctors). The first column shows
empirical measures of income inequality within the top for New York State in 2012. The second is the model-predicted
difference between 1980 and 2012 and show changes (positive numbers means value higher in 2012 than 1980). The
third shows analogous predictions where we shut off spillovers by keeping the shape of doctors’ income distribution
constant at 2012 level, but shift it down by the same mean. The previous two columns considers doctors as the only
spillover occupation (4.6% of top 10%), whereas the final two consider a larger size of spillover occupations (2× actual
size of doctors). Top 5% / 10% refers to the share of top 10% income accruing to the top 5% earners.

levels but shift it down by the same log mean, eliminating the spillover effect. The

spillover model predicts a 8.1 percentage point increase in the share of the top 10%

that accrues to the top 1% between 1980 and 2012, compared to only 7.0 points in the

counterfactual without spillovers. This substantial difference exists despite doctors

comprising only 4.6% of workers in the top 10% of the overall distribution.

To illustrate the potential broader impact of spillovers, we scale up the population

experiencing spillovers. Real estate occupations (agents and managers) and dentists

are around half as numerous as physicians. We thus double the number of physicians,

representing a larger set of occupations subject to spillovers (henceforth, spillover

occupations).39 The model without spillovers now has a larger group with no within-

group increase in income inequality and predicts a 6.0 percentage point increase in the

top 1% share. The model with spillovers predicts a 8.0 percentage point increase—a

difference of more than 30%. So even when spillover occupations are a relatively

small share of the top income distribution, they can generate substantial additional

within-top inequality.40 To streamline exposition, for the remainder of this section

we only focus on the case with this broader category of “spillover occupations”.

Nominal and real income inequality.Our theoretical model showed that spillovers

reduce welfare inequality for consumers. We build on that here by distinguishing

between income and welfare changes. For each percentile of the consumer distribution,

we calculate the equivalent variation—the extra income needed in 1980 to reach the

39Formally, we double the distribution of potential doctors and halve λ to capture the larger mass
of spillover occupations. We recalibrate the model, which leaves Fz(z) unchanged and doubles β.

40These calculations are for our baseline model where spillover occupations don’t consume their
own services. In an (unreported) analysis where they do, quantitative results are almost identical.
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same utility level as in 2012. That is, we calculate the equilibrium utility value for

each percentile, p, of consumers vtp(x
t
p) = u(xtp−ωt(zt(xtp)), zt(xtp)) for t = 1980, 2012,

where xtp is the income of a consumer at percentile p in year t and ωt(zt(xtp)) is the

spending on medical services at the equilibrium choice of doctor quality zt(xtp) in year

t. We then calculate the equivalent variation, EVp, as the extra income required in

1980 to bring an agent at percentile p to the utility of 2012, that is:

v1980p (x1980p + EVp) = v2012p (x2012p ). (18)

Figure 6 shows both the observed change in real income and the welfare-based

EV measure. For consumers in the bottom the difference is below 0.01. However, for

those above the 80th percentile, the log difference between income and welfare changes

grows to 0.02−0.04 (Panel (b)). This difference reflects the disproportionate increase

in prices for high-quality services faced by high-income consumers. Although the

share of spending on services provided by spillover occupations declines with income,

this effect is quantitatively minor compared to the price effect.

The spillover effect implies that conventional measures of income inequality us-

ing a common price deflator overstate the increase in welfare inequality. While the

measured 90/50 income ratio rose by 0.20 log points, the corresponding welfare ratio

increased by only 0.18 log points.

These two exercises show that—although spillovers increase top income inequal-

ity—they also imply that changes in income inequality overstate changes in welfare

inequality. Appendix E brings these two elements together and shows that, compared

to the scenario where doctors all experience the same proportional income change,

spillovers reduce welfare inequality outside of the top 1% of the combined income

distribution, but increase it in the very top. In essence, high-earning consumers lose

from spillover effects through higher prices on the services they buy. But, in our set-

ting, the service providers are even higher up the income distribution and the gains

from spillovers accumulate in the top 1% of the income distribution.

7 Conclusion
This paper documents that the majority of the increase in top income inequality in

the U.S. is within occupations. We develop a new theoretical framework where an

increase in top income inequality in one occupation can spill over through consumption

to other occupations that provide non-divisible services directly to customers, such

43



Figure 6: Changes in income and welfare for consumers, 1980 to 2012

(a) Welfare and Income Changes
(b) Difference between welfare and

income changes

Notes: In Panel (a), “Income difference” is the log change in real income (with a common CPI) for each percentile of
consumers and “Welfare difference” is the extra income required in 1980 to reach the utility for the same percentile
in 2012. Panel (b) shows the gap between Income difference and Welfare difference shown in Panel (a).

as physicians, dentists and real estate agents. We show empirically that changes in

local income inequality do indeed spill over to these occupations, with standardized

coefficients ranging from 1 to 1.5. Calibrating our model to New York State, we find

that spillovers can account for the entire increase in income inequality for physicians.

Our analysis suggests that the increase in top income inequality observed across

most occupations since 1980 may not require a common explanation. Increases in

inequality for bankers or CEOs due to deregulation or globalization may have spilled

over to other high-earning occupations, increasing top income inequality broadly.

While we have emphasized positive results, the theory has an important norma-

tive implication: Increasing inequality in the prices of non-divisible services implies

that welfare inequality does not rise as much as nominal income inequality. Similar

spillover effects could exist for scarce goods such as luxury wine, or sport teams, a

question we leave to future research.
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A Theory Appendix

A.1 Positive assortative matching in equilibrium

Since CES and Cobb-Douglas functions have positive cross-partial derivatives, the following

lemma applies to the utility functions considered in our paper:

Lemma 1. The equilibrium features positive assortative matching between the income of the

patient and the skill of the doctor if the utility function has a positive cross-partial derivative.

Proof. We prove the result by contradiction. Consider two individuals, 1 and 2, with income

x1 < x2 whose consumption bundles are so that z1 > z2 and c1 < c2. Utility depends on z and

the remaining disposable income x − ω (z). Since widget maker 1 chooses a doctor of quality
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z1, it must be that: u (z1, x1 − ω (z1)) ≥ u (z2, x1 − ω (z2)) . Further, we have:

u (z1, x2 − ω (z1))− u (z2, x2 − ω (z2))

= u (z1, x2 − ω (z1))− u (z1, x1 − ω (z1)) + u (z1, x1 − ω (z1))− u (z2, x1 − ω (z2))

+ u (z2, x1 − ω (z2))− u (z2, x2 − ω (z2))

=

∫ x2−ω(z1)

x1−ω(z1)

(
∂u

∂c
(z1, c)−

∂u

∂c
(z2, c)

)
+ u (z1, x1 − ω (z1))− u (z2, x1 − ω (z2)) .

If the utility function has a positive cross-partial derivative, then the first term is positive as z1 >

z2. Since the second term is also weakly positive, then u (z1, x2 − ω (z1)) > u (z2, x2 − ω (z2)).

In other words, widget maker 2 would rather pick a doctor of ability z1. This is a contradiction

and it must be that z1 < z2.

A.2 Proofs for the baseline model

A.2.1 Solving equation (5)

We look for a specific solution to equation (5). We find that w (z) = K1z
αz
αx is one if

K1 = xmin
βαxλ

αz (1− β) + βαx

(
1

zc

)αz
αx

.

The solutions to the differential equation w′ (z) z + β
1−βw (z) = 0 are given by Kz−

β
1−β for any

constant K. We get that all solutions to (5) take the form:

w (z) =
xminβαxλ

αz (1− β) + βαx

(
z

zc

)αz
αx

+Kz−
β

1−β .

We then obtain (6) by using that w (zc) = xmin which fixes

K = xminz
β

1−β
c

αz (1− β) + βαx (1− λ)

αz (1− β) + βαx
.

A.2.2 Proof of Proposition 2

Combining (4) and (6), we can derive spending on health care as

h (x) =
βαx

αz (1− β) + βαx
x+ xmin

αz (1− β) + βαx (1− λ)

λ (αz (1− β) + βαx)

(xmin

x

) αxβ
αz(1−β)

. (19)

Combining (19) with (1) and (4), we obtain the utility of a widget maker with income x:

u (x) =

(
αz (1− β)x

αz (1− β) + βαx
− (αz (1− β) + βαx (1− λ))xmin

λ (αz (1− β) + βαx)

(xmin

x

)αx
αz

β
1−β

)1−β

zβc

(
x

xmin

)βαx
αz

.
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Therefore eq (x) obeys

eq (x) =

(
αz (1− β)x

αz (1− β) + βαx
− (αz (1− β) + βαx (1− λ))xmin

λ (αz (1− β) + βαx)

(xmin

x

)αx
αz

β
1−β

)(
zc
zr

x

xmin

) αxβ
αz(1−β)

,

which implies that for x large enough:

eq (x) ≈
(
zc
zr

) αxβ
αz(1−β) αz (1− β)x

−αx
αz

β
1−β

min

αz (1− β) + βαx
x1+

αx
αz

β
1−β .

The distribution of real income, EQ, obeys Pr (EQ > e) = Pr (X > eq−1 (e)), so that for e large

enough, we obtain:

Pr (EQ > e) ≈
(
zc
zr

) αx

1+αz
αx

1−β
β

(
xminαz (1− β)

αz (1− β) + βαx

1

e

) αx

1+αx
αz

β
1−β .

Therefore asymptotically, real income is Pareto distributed with a shape parameter αeq ≡
αx

1+αx
αz

β
1−β

. Moreover, we obtain: d lnαeq

d lnαx
= 1

1+αx
αz

β
1−β

.

A.3 Generalization to other utility functions

We now consider a generalized version of the model. There is a mass 1 of patients and a mass

µ of potential doctors. Potential doctors may consume medical services with the same utility

function as other agents (in which case the mass of widget makers is 1 − µ) or not (the mass

of widget makers is 1). The technology for health services is the same as before and we keep

λ > µ−1. Agents not working as doctors produce a composite good which is the numeraire, and

potential doctors can work as widget makers with the lowest productivity xmin as an alternative.

Patients’ income is asymptotically Pareto distributed:41 Px (X > x) = Gx (x)Gx,x (x) ,

where Gx,x (x) is the conditional counter-cumulative distribution above x, Gx (x) is the un-

conditional counter-cumulative distribution, and for x large enough, Gx (x, x) ≈ (x/x)αx with

αx > 1. The ability distribution of potential doctors is also asymptotically Pareto distributed.

We assume that patients’ utility features positive cross-partial derivative (and put more

structure in the following subsections), so that the equilibrium still features assortative matching

and we still denote the matching function m (z). Market clearing at every z can still be written

as (3). The least able potential doctor who actually works as a doctor will have ability zc =

G
−1

z (1/ (λµ)), which is independent of αx. Therefore, equation (3) implies that m (z) is defined

by m (z) = G
−1

x

(
Gz,zc (z)

)
. For z above some threshold, z, both doctors’ talents and incomes

41If potential doctors do not consume health care services, this is an assumption on an exogenous object,
the income distribution of widget makers. If potential doctors do consume health care services, this is an
assumption on the equilibrium, which will be verified if the (exogenous) income distribution of widget makers
is asymptotically Pareto.
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are approximately Pareto distributed, which allows us to rewrite the previous equation as:

Gx (m (z))

((
m (z)

m (z)

)αx

+ o

((
m (z)

m (z)

)αx
))

= Gz,zc (z)

((
z

z

)αz

+ o

((
z

z

)αz
))

,

⇒ m (z) = Bz
αz
αx + o

(
z

αz
αx

)
with B = m (z)

(
Gx (m (z))

Gz,zc (z) z
αz

) 1
αx

. (20)

A.3.1 Cobb-Douglas case

We now assume a Cobb-Douglas utility as in the baseline model. Solving for the patient problem

still leads to the differential equation (2). Plugging (20) in (2) gives:

w′ (z) z +
β

1− β
w (z) ≈ β

1− β
λBz

αz
αx .

Up to a constant, the problem is identical to the baseline for high z, so that Proposition 1

applies. Doctors’ income is asymptotically Pareto distributed with shape parameter αx.

Proof. We can rewrite (2) as

w′ (z) z =
β

1− β

(
λBz

αz
αx − w (z)

)
+ o

(
z

αz
αx

)
. (21)

We define w (z) ≡ βαx

αz(1−β)+βαx
λBz

αz
αx which is a solution to the differential equation without

the negligible term, and w̃ (z) ≡ w (z)− w (z), which must satisfy

w̃′ (z) z = − β

1− β
w̃ (z) + o

(
z

αz
αx

)
.

This gives

w̃′ (z) z
βz

1−βz +
β

1− β
w̃ (z) z

βz
1−βz

−1 = o
(
z

αz
αx z

βz
1−βz

−1
)

Integrating we obtain: w̃ (z) = Kz−
βz

1−βz + o
(
z

αz
αx

)
for some constant K, so that w̃ (z) is

negligible in front of w (z). This ensures that

w (z) =
βαx

αz (1− β) + βαx
λBz

αz
αx + o

(
z

αz
αx

)
. (22)

Therefore, for wd large enough, doctors’ income is distributed according to

P (Wd > wd|wd > wd) ≈ (wd/wd)
αx : (23)

doctors’ income follows a Pareto distribution with shape parameter αx. When potential doctors
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consume medical services, this result is consistent with the initial assumption that patients’

income is asymptotically Pareto distributed with shape parameter αx.

A.3.2 CES case and Proof of Proposition 3

We now assume that patients’ utility is CES (9) with ε ̸= 1. The first order condition for the

patient’s problem can be written as:

∂u

∂z
= ω′ (z)

∂u

∂c
. (24)

Using (9) and (4), and with w (z) = λω (z), we find that for high levels of z the wage function

obeys a differential equation given by

w′ (z) =
λ

ε−1
ε β

1− β
z−

1
ε

(
λBz

αz
αx − w (z)

) 1
ε
(1 + o(1)) . (25)

The asymptotic distribution of doctors’ wages is given either by Proposition 3 or by the

following Proposition, which studies the remaining cases.

Proposition 6. 1) If either (i) ε > 1 and α−1
x < α−1

z , or (ii) ε < 1 and α−1
z < α−1

x , then doctors’

wages are asymptotically Pareto distributed with the same shape parameter as widget makers:

αw = αx. Further, asymptotically, widget makers spend all their income on health.

2) Assume that ε < 1. Then for α−1
x < (1− ε)α−1

z , doctors’ wages are bounded. For

α−1
x = (1− ε)α−1

z , doctors’ wages are asymptotically exponentially distributed. In both cases,

the elasticity of health expenditures with respect to income tend to 0, lnh(x)
lnx

→ 0.

Proof. We now establish Propositions 3 and 6. Since consumption of the homogeneous good

must remain positive then limλBz
αz
αx − w (z) ≥ 0, which means that w (z) cannot grow faster

than z
αz
αx . We can then distinguish 2 cases: w (z) = o

(
z

αz
αx

)
and w (z) ∝ z

αz
αx .

Case with w (z) = o
(
z

αz
αx

)
. Then for z high enough, one obtains that

w′ (z) = λ
β

1− β
B

1
ε z(

αz
αx

−1) 1
ε + o

(
z(

αz
αx

−1) 1
ε

)
. (26)

Integrating, we obtain that for
(
αz

αx
− 1
)

1
ε
̸= −1

w (z) = K + λ
β

1− β

B
1
ε(

αz

αx
− 1
)

1
ε
+ 1

z(
αz
αx

−1) 1
ε
+1 + o

(
z(

αz
αx

−1) 1
ε
+1
)
,

where K is a constant. Note that to be consistent, we must have
(
αz

αx
− 1
)

1
ε
+ 1 < αz

αx
, that is

(αz − αx) (ε− 1) > 0: this case is ruled out if αz ≥ αx and ε < 1 or if αz ≤ αx and ε > 1.
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If
(
αz

αx
− 1
)

1
ε
+ 1 < 0 then w (z) is bounded by K.

If
(
αz

αx
− 1
)

1
ε
+ 1 > 0, then we get that

w (z) = fw (z) = λ
β

1− β

B
1
ε(

αz

αx
− 1
)

1
ε
+ 1

z(
αz
αx

−1) 1
ε
+1 + o

(
z(

αz
αx

−1) 1
ε
+1
)
,

where the notation fw is introduced for clarity. Therefore one gets, for w large:

Pr (W > w) = Pr
(
Z > (fw)−1 (w)

)
= Gw (w)

(
w

w

) αz

(αz
αx

−1) 1
ε+1

+ o

(
w

− αz

(αz
αx

−1) 1
ε+1

)
,

so that w is Pareto distributed asymptotically with a coefficient α−1
w = 1

ε
α−1
x +

(
1− 1

ε

)
α−1
z ,

which is increasing in α−1
x (and we have α−1

w < α−1
x ).

If
(
αz

αx
− 1
)

1
ε
+ 1 = 0, then αz = αx (1− ε), and integrating (26), one obtains

w (z) = fw (z) = λ
β

1− β
B

1
ε ln z + o (ln z) .

Therefore

Pr (W > w) = Pr

(
Z >

(
exp

(
1− β

λβB
1
ε

w

)
+ o (exp (w))

))
= Gz,zc (z) z

αz exp

(
−αz (1− β)

λβB
1
ε

w

)
+ o (exp (−αzw))

In that case, w is distributed exponentially.

Case where w (z) ∝ z
αz
αx . That is we assume that

w (z) = Az
αz
αx + o

(
z

αz
αx

)
(27)

for some constant A > 0. Then, we have that

Pr (W > w) = Pr

(
Z >

((w
A

)αx
αz

+ o (w)
αx
αz

))
= Gw (w)

(
w

w

)αx

+ o (w)
αx
αz

That is w is Pareto distributed with coefficient αx. Plugging (27) in (25), we get:

A
αz
αx
z

αz
αx

−1 + o
(
z

αz
αx

−1
)
= λ

ε−1
ε

β

1− β
(λB − A)

1
ε z(

αz
αx

−1) 1
ε + o

(
(λB − A)

1
ε z(

αz
αx

−1) 1
ε

)
. (28)

First, if αz = αx, then we obtain A = λ
ε−1
ε

βz
βc

(λB − A)
1
ε .

Second, assume that αz ̸= αx. If λB ̸= A then (28) is impossible when ε ̸= 1, and we must
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have that λB = A. This equation then requires that

αz
αx

− 1 <

(
αz
αx

− 1

)
1

ε
⇔ (αz − αx) (ε− 1) < 0.

In fact, for (αz − αx) (ε− 1) < 0, one gets that

w (z) = λBz
αz
αx − λ

(
B
αz
αx

βc
βz

)ε
zε(

αz
αx

−1)+1 + o
(
zε(

αz
αx

−1)+1
)

satisfies (25) as long as the function o
(
zε(

αz
αx

−1)+1
)
solves the appropriate differential equation.

Collecting the different cases together gives Propositions 3 and 6. In addition, since the

income distribution of doctors never has a fatter tail than a Pareto with shape parameter αx,

the results are always consistent with patients’ income being Pareto distributed with shape

parameter αx for the case where potential doctors consume medical services.

A.3.3 Homothetic utility function

We now consider a general homothetic utility function u. In that case, the ratio of marginal util-

ities ∂u
∂z
/∂u
∂c

only depends on the ratio c/z. Using patient’s budget constraint and the matching

function (20), we can then write (24) as

w′ (z) = λ
∂u

∂z
/
∂u

∂c
≡ λf

(
Bz

αz
αx

−1 − w (z)

zλ

)
. (29)

We assume that the utility function admits positive and finite limits to its elasticity of substi-

tution when z/c goes to either 0 or infinity. That is:

lim
z/c→∞

−
d ln

(
∂u
∂z
/∂u
∂c

)
d ln (z/c)

=
1

ε∞
and lim

z/c→0
−
d ln

(
∂u
∂z
/∂u
∂c

)
d ln (z/c)

=
1

ε0
,

where εk ∈ (0,∞) for k ∈ {0,∞}. Then, we can write that for z/c arbitrarily large (k = ∞) or

small (k = 0):

ln

(
∂u

∂z
/
∂u

∂c

)
=

(
1

εk
ln

(
λBz

αz
αx

−1 − w (z)

z

)
+ ln β

)
(1 + o (1)) ,

where β is a constant. In these two cases, we can then rewrite (29) as:

w′ (z) = λ
εk−1

εk β

(
λBz

αz
αx

−1 − w (z)

z

) 1
εk

(1 + o (1)) , (30)

which is the same expression as (25) in the CES case (except that there are two potential values

for εk). We obtain:
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Proposition 7. Propositions 3 and 6 apply to any homothetic utility function which admit posi-

tive and finite local elasticities of substitutions as the ratio z/c tend to 0 or infinity. The relevant

elasticity is ε0 when αz > αx and ε∞ when αz < αx (Proposition 1 applies when εk = 1).

Proof. If αz < αx, then z/c → ∞, regardless of w (z), and the logic of Propositions 3 and 6

immediately applies with ε∞ (and Proposition 1 applies if ε∞ = 1).

Consider now the case αz > αx. To establish the result, we need to check that z/c → 0

(that is c/z = λBz
αz
αx

−1 − w (z) /z → ∞) in all cases. If ε0 = 1, wages are Pareto dis-

tributed and health expenditures are an interior share of total income, which ensures that

λBz
αz
αx

−1 − w (z) /z → ∞ (so Proposition 1 applies). If ε0 > 1, then, following Propo-

sition 3, health expenditures become a negligible share of total income, which ensures that

λBz
αz
αx

−1 − w (z) /z → ∞. If ε0 < 1, then, following Proposition 6, health expenditures are

asymptotically equal to total income. Therefore, we must have w (z) = λBz
αz
αx − g (z), where

g (z) is negligible compared with z
αz
αx . Plugging this expression in (30) gives:

αz
αx
λBz

αz
αx

−1 − g′ (z) = λ
ε−1
ε β

(
g (z)

z

) 1
ε

(1 + o (1)) .

Assume that g (z) /z is bounded, then we would get that g′ (z) → αzλBz
αz
αx

−1/αx, but this con-

tradicts the assumption that g (z) is negligible in front of z
αz
αx . Therefore, g (z) /z is unbounded,

so that λBz
αz
αx

−1 − w (z) /z → ∞ in that case as well.

A.4 Generalized ability distribution

We consider the set-up of the baseline model with a Cobb-Douglas utility function but generalize

the ability distribution to any unbounded distribution with a counter-CDF denoted Gz. (We

keep the widget makers’ income distribution Pareto but this could be generalized as well.) We

assume that lim
z→∞

zgz(z)

Gz
exists. If this limit is positive and finite then the ability distribution is

asymptotically Pareto (with a shape parameter equal to that limit) and this case is treated in

Appendix A.3.1. We focus here on the case where the limit is either 0 or infinite. As before,

there is a cut-off value zc above which all potential doctors choose to be doctors. We then

define G̃ (z) = Gz (z) /Gz (zc) = λµGz (z), which is the counter-cumulative ability distributions

of individuals who actually choose to be doctors (and g̃ is the corresponding conditional PDF).

We have lim zg̃(z)

G̃
= lim zgz(z)

Gz
. Equation (4) is then replaced by m (z) = xmin

(
G̃ (z)

)− 1
αx
, which

allows to derive the differential equation for the wage function as:

w′ (z) z =
β

1− β

(
λxmin

(
G̃ (z)

)− 1
αx − w (z)

)
, (31)

instead of (5). We then establish:
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Proposition 8. If the ability distribution has a tail at least as fat as Pareto ( lim
z→∞

zgz(z)

Gz
exists

and is finite), doctors’ income is asymptotically Pareto distributed with shape parameter αx. If

the ability distribution has a tail thinner than Pareto ( lim
z→∞

zgz(z)

Gz
= ∞), doctors’ income is not

asymptotically Pareto distributed but ln(P (W>w))
lnw

decreases with αx for w large enough.

For a Pareto distribution, ln (P (W > w)) / lnw = −αw, so the statement that ln (P (W > w)) / lnw

decreases with αx for high w directly generalizes Proposition 1: top income inequality spills over

from the consumers’ distribution to the doctors’ income distribution even when the ability dis-

tribution has a tail thinner than Pareto.

Proof. We consider in turn two cases: either w (z) → Aλxmin

(
G̃ (z)

)− 1
αx

for some constant

A ∈ (0, 1] or w (z) is dominated by λxmin

(
G̃ (z)

)− 1
αx
.

Case 1: w (z) → Aλxmin

(
G̃ (z)

)− 1
αx
. Then

P (W > w) → G̃

(
G̃−1

(
w

Aλxmin

)−αx
)

=

(
w

Aλxmin

)−αx

,

so that the doctors’ income distribution is Pareto distributed with shape parameter αx. We

can write w (z) = A (z)λxmin

(
G̃ (z)

)− 1
αx

where A (z) tends toward a positive constant so that

in the limit A′ (z) = 0. Plugging this in (31), one gets:

A′ (z) z +
1

αx

zg̃ (z)

G̃ (z)
A (z) =

βz (1− A (z))

1− βz
. (32)

Since A (z) tends toward a constant, we must have limA′ (z) z = 0 (if A′ (z) z were bounded

below above 0, then A(z) would grow faster than the log function). When lim zg̃(z)

G̃(z)
is positive

and finite, we recover the asymptotic Pareto case that we have already studied. If lim zg̃(z)

G̃(z)
= 0,

then we must have that A (z) → 1. This is consistent with equation (32) since both the right-

hand and left-hand sides tend toward 0. In contrast, if lim zg̃(z)

G̃(z)
= ∞, the left-hand side is

unbounded and the right-hand side is bounded which yields a contradiction: so that w(z) must

be dominated by
(
G̃ (z)

)− 1
αx

in that case.

Case 2: w (z) = o

(
λxmin

(
G̃ (z)

)− 1
αx

)
. Then, (31) leads to

w′ (z) =
β

1− β
λxmin

1

z

(
G̃ (z)

)− 1
αx

(1 + o (1)) . (33)
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If lim zgz(z)

Gz(z)
= 0, then for any K > 0, we get that for z high enough, G̃ (z) > Kzg̃ (z), so that

w′ (z) > K
β

1− β
λxminzg̃ (z)

(
G̃ (z)

)− 1
αx

−1

.

This directly implies that w (z) > K
(
G̃ (z)

)− 1
αx
for any K, which is a contradiction. Since we

have also ruled out lim zgz(z)

Gz(z)
positive and finite, then we must have that lim zgz(z)

Gz(z)
= ∞.

In return when lim zgz(z)

Gz(z)
= ∞, (33) implies that d

dz

(
G̃ (z)

)− 1
αx
/w′ (z) → ∞ as d

dz

(
G̃ (z)

)− 1
αx

=

zg̃ (z)
(
G̃ (z)

)− 1
αx

−1

. This justifies the assumption that w (z) = o

(
λxmin

(
G̃ (z)

)− 1
αx

)
. Inte-

grating (33), we can write

w (z) = w (zM) +
β (1 + o (1))

1− β
λxmin (Fαx (z)− Fαx (zM)) .

for some zM , where Fαx (z) is a primitive of 1
z

(
G̃ (z)

)− 1
αx
. As G̃ (z) has a thinner tail than

Pareto, we get in particular that G̃ (z) ≤ z−2αx , so that 1
z

(
G̃ (z)

)− 1
αx
> z. As a result Fαx (z)

and w (z) go to infinity. We can then rewrite:

w (z) =
β (1 + o (1))

1− β
λxminFαx (z) ,

so that for large w, z (w) ≈ F−1
αx

(
w 1−βz
βzλxmin

)
. We then get

P (W > w) = G̃ (z (w)) ≈ G̃

(
F−1
αx

(
w

1− β

βλxmin

))
.

By definition, we can rewrite

w
1− βz
βλxmin

=

∫ F−1
αx

(
w 1−β

βλxmin

)
zM

1

ζ

(
G̃ (ζ)

)− 1
αx
dζ.

Differentiating with respect to αx, one gets:

∂F−1
αx

(w)

∂αx

1

F−1
αx

(w)

(
G̃
(
F−1
αx

(w)
))− 1

αx
=

∫ F−1
αx (w)

zM

1

αx

1

ζ

(
G̃ (ζ)

)− 1
αx

−1

dζ.

Therefore Fαx is increasing in αx. As G̃ is decreasing, P (W > w) is decreasing in αx.
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A.5 Scalability in health care: proof of Proposition 4

This section presents the proof of Proposition 4.42 Health care market clearing now takes into

account that doctors serve different number of patients. Still denoting zc the ability of the least

able doctor and using the Pareto assumptions, we get:

(mz/xmin)
−αx =

∫ ∞

z

λ (ζ)αz
1

ζ
(ζ/zc)

−αz dζ, (34)

Cobb-Douglas case. In the Cobb-Douglas case, we combine (2), (11) and (34), and we

obtain the differential equation:

ω′ (z) z +
β

1− β
ω (z) =

β

1− β
xmin

(∫ ∞

z

(
ω (ζ)

k

)εS
αz

1

ζ

(
ζ

zc

)−αz

dζ

)− 1
αx

. (35)

We verify that a solution to the problem of the form ω (z) = C1z
ψ exists. Plugging this

expression in (35), we obtain a solution with ψ = αz

αx+εS
and some constant C1. In fact, the

solution must asymptotically behave like C1z
ψ, otherwise the left-hand and right-hand sides of

(35) cannot be of the same order. Doctors’ income can then be written as

w (z) = λ (z)ω (z) → C2z
αz(1+εS)

αx+εS ,

where C2 is another constant. Therefore for w, large enough, we obtain:

Pr (W > w) ≈ Pr

(
Z > (w/C2)

αx+εS

αz(1+εS)

)
≈ zαz

c (w/C2)
−αx+εS

1+εS .

Doctors’ incomes are asymptotically Pareto distributed with inverse Pareto parameter α−1
w :

α−1
w =

1 + εS

1 + εSα−1
x

α−1
x > α−1

x .

We note that α−1
w is increasing in α−1

x and in εS (since αx > 1). Besides, we get λ(z) =

CεS

1 zψε
S
/kε

S
, so that

Pr (Λ > λ) ≈ Pr

(
Z >

(
λkε

S

/CεS

1

)αx+εS

αzεS

)
∝ λ−

αx+εS

εS .

42For the cases not covered by Proposition 4, we get (proofs omitted) that doctors’ income distribution is

also asymptotically Pareto distributed with α−1
w = 1+εS

1+εSα−1
x

α−1
x if ε < 1 and αz > εS + αx, or ii) ε > 1 and

αz < εS + αx. In addition, it is bounded if ε < 1 and (1− ε)αx > αz.
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λ is Pareto distributed with inverse Pareto parameter α−1
λ = εSα−1

x

1+α−1
x εS

increasing in α−1
x .

CES case. We now consider the CES case. We can rewrite the first-order condition (24) as

ω′ (z) =
β

1− β
z−

1
ε (m (z)− ω (z))

1
ε .

We assume (and verify) that when either i) ε < 1 and (1− ε)αx < αz < εS + αx, or ii) ε > 1

and αz > εS + αx, we are on the empirically relevant case where heath care expenditures rise

less fast than income so that ω (z) /m (z) → 0. In that case, we get that for z sufficiently high:

ω′ (z) ≈ β

1− β
z−

1
εm (z)

1
ε . (36)

We guess and verify that the solution featuresm (z) = m0z
m1+o (zm1) withm1 > 0. Integrating

(36) gives

ω (z) ≈ β

1− β

1
m1−1
ε

+ 1
m

1
ε
0 z

m1−1
ε

+1 +K + o
(
z

m1−1
ε

+1
)
,

for some constant K. Plugging that expression in (34) and using (11) gives

(m (z))−αx xαx
min =

αzz
αz
c

kεS

∫ ∞

z

(
β

1− β

m
1
ε
0 ζ

m1−1
ε

+1

m1−1
ε

+ 1
+K + o

(
z

m1−1
ε

+1
))εS

ζ−αz−1dζ. (37)

We need to consider three cases. i) First, assume that m1−1
ε

+ 1 > 0, then K is negligible in

front of m1−1
ε

+ 1 and we can rewrite (37) as

(m0z
m1)−αx xαx

min ≈ αzz
αz
c

kεS

(
β

1− β

m
1
ε
0

m1−1
ε

+ 1

)εS

1(
m1−1
ε

+ 1
)
εS − αz

z(
m1−1

ε
+1)εS−αz . (38)

This integration is only possible if
(
m1−1
ε

+ 1
)
εS − αz < 0 and this (approximate) equality can

only hold if

αxm1 = αz −
(
m1 − 1

ε
+ 1

)
εS ⇔ m1 =

αz +
(
1
ε
− 1
)
εS

αx +
εS

ε

.

For this value of m1, we can verify that m1 > 0 since we assumed that αz > εS + αx when

ε > 1. In addition,
m1 − 1

ε
+ 1 =

αz + (ε− 1)αx
εαx + εS

> 0,

since we have assumed that when ε < 1 then (1− ε)αx < αz. Moreover,(
m1 − 1

ε
+ 1

)
εS − αz =

αx
[
εS (ε− 1)− αzε

]
εαx + εS

,
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which is negative if ε < 1 but also if ε > 1 as in that case we have assumed that αz > εS + αx.

Finally, we get that

ω (z) ≈ β

1− β

m
1
ε
0

m1−1
ε

+ 1
z

m1−1
ε

+1 ≈ β

1− β

m
1
ε
0

m1−1
ε

+ 1
z

αz+(ε−1)αx
εαx+εS .

We have that

ω (z)

m (z)
≈ β

1− β

m
1
ε
−1

0
m1−1
ε

+ 1
z

(
αz−εS−αx

αx+ εS
ε

)
( 1
ε
−1)

→ 0,

since we have assumed that αz < εS + αx when ε < 1 and αz > εS + αx when ε > 1. Therefore

health care expenditures do not scale up with income asymptotically as assumed initially and

this case is internally consistent.

ii) Assume that m1−1
ε

+ 1 < 0 and K ̸= 0 (or m1−1
ε

+ 1 = 0), then (37) leads to

m−αx
0 z−m1αxxαx

min ≈ zαz
c

kεS
KεSz−αz . (39)

Therefore, we must have m1 =
αz

αx
. This implies that

m1 − 1

ε
+ 1 =

1

ε

(
αz
αx

− 1 + ε

)
> 0,

since we have assumed that αz > (1− ε)αx when ε < 1. This leads to a contradiction, so that

this case is impossible.

iii) Assume now that m1−1
ε

+1 < 0 and K = 0, then (37) also leads to (38), which as argued

below implies m1−1
ε

+ 1 > 0 leading to a contradiction.

Therefore only case i) is possible. We then get that doctors’ income is

w (z) =
1

kεS
(ω (z))1+ε

S

→ C1z
αz+(ε−1)αx

εαx+εS
(1+εS),

for some constant C1, so that doctors’ income is asymptotically Pareto distributed with

αw = αz
εαx + εS

(αz + (ε− 1)αx) (1 + εS)
,

which we can rewrite as (12). We get that

dα−1
w

dα−1
x

=
εS + 1

ε
(
εS

ε
α−1
x + 1

)2 [1− (1− 1

ε

)
α−1
z εS

]
> 0,
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which is obvious if ε < 1 and holds if ε > 1 since αz > εS + αx. Moreover,

dα−1
w

dεS
=

(
1− α−1

x

ε

) ((
1− 1

ε

)
α−1
z + 1

ε
α−1
x

)
(
εS

ε
α−1
x + 1

)2 ,

which is positive if and only if εαx > 1. Finally, we get that λ(z) ∝ w (z)ε
S/(1+εS) ∝

z
αz+(ε−1)αx

εαx+εS
εS
, so that λ is Pareto distributed with inverse Pareto parameter α−1

λ =
εS((1− 1

ε)α
−1
z + 1

ε
α−1
x )

εS

ε
α−1
x +1

,

which is increasing in α−1
x . This establishes the proof.

A.6 Occupational mobility

We now analyze the model briefly described in Section 3.3.2. Individuals’ abilities as doctors and

widget makers are positively (in fact perfectly) correlated so that there can be occupational

mobility along the entire ability distribution. Formally, we keep a similar set-up as in the

baseline model but we assume that there is a mass 1 of agents who decide whether to be

doctors or widget makers. We rank agents in descending order of ability and use i to denote

their rank. For two agents i and i′ with i < i′, i will be better both as a widget maker and

as a doctor than i′. Both ability distributions are Pareto with parameters (xmin, αx) for widget

maker and (zmin, αz) for doctors. An agent i can choose between becoming a widget maker

earning x (i) or being a doctor providing health services of quality z (i) and earning w (z (i)).

Those working as doctors also need the services of doctors. We assume that λ > 1 to ensure that

everyone can get health services. By definition of the rank we have that the counter-cumulative

distribution functions for x and z obey Gx (x (i)) = Gz (z (i)) = i.

Assume that below a certain rank, some individuals choose to be widget makers and some

doctors. This holds in equilibrium under a condition specified below. Then, individuals must

be indifferent between the two occupations, so that for i low enough, we have w (z (i)) = x (i).

Therefore the wage function must satisfy w (z) = G
−1

x

(
Gz (z)

)
for z high enough. As both

ability distributions are Pareto, we get:

w (z) = xmin (z/zmin)
αz/αx . (40)

Doctor wages grow in proportion to what they could earn as a widget maker.

Let µ (z) ∈ [0, 1] denote the share of individuals with medical ability z who choose to be

doctors. Market clearing in medical services implies that:

(xmin/m (z))αx =

∫ ∞

z

λµ (ζ) gz (ζ) dζ, (41)

where m (z) denotes the income of the patient of a doctor of quality z.
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The first order condition on health care consumption (2) still applies. For z sufficiently high,

µ is interior, and (40) holds, combining these expressions with (41), we obtain:∫ ∞

z

µ (ζ)αzζ
−αz−1dζ = λαx−1z−αz

(
αz
αx

+
β

1− β

)−αx

.

Differentiating with respect to z, we find that µ is a constant: µ = λαx−1
(
αz

αx
+ β

1−β

)−αx

.

Intuitively, with a constant µ, doctors’ wages grow proportionately with patients’ incomes, in

line with the Cobb-Douglas assumption. To be consistent with our assumption of an interior

equilibrium, we must have λαx−1
(
αz

αx

1−β
β

+ 1
)−αx

< 1.43

With a constant share of individuals choosing to be doctors (above a threshold), we get that

Pdoc (Wd > wd) = P (Z > w−1 (wd)) for wd high enough so that the observed distribution for

doctor wages is Pareto with a shape parameter αx. Therefore, Proposition 1 still applies:44

Proposition 9. Assume that λαx−1
(
αz

αx

1−β
β

+ 1
)−αx

< 1, then doctors’ income is Pareto dis-

tributed above a threshold with the same shape parameter as for widget makers. Therefore, an

increase in top income inequality for widget makers increases top income inequality for doctors.

Therefore the models with and without occupational mobility are observationally equivalent

for top income inequality: doctors’ top income inequality perfectly traces that of widget makers.

Finally, note that with occupational mobility, doctors and widget makers interact through

two channels: a demand side and an outside option side. Appendix A.6.1 below presents an

additional model that separates the two. It highlights that the demand effect drives the result.

Intuitively, if top income inequality increases for the outside option, higher-ability doctors will

move to the outside option. This generates an increase in the relative pay of the remaining high-

ability doctors, which, under Cobb-Douglas preferences, exactly compensates for the change in

ability distribution of active doctors, leaving the observed income distribution unchanged.45

A.6.1 Disentangling supply side and demand side effects

To disentangle demand side and outside option effects, we now assume that doctors have an

outside option positively correlated with their ability but patients are a separate group. There

are two types of agents: a mass 1 of consumers and a mass M of potential doctors. Consumers

have the same utility as before (1), and their income, x, is Pareto distributed with shape

parameter αx. Potential doctors only consume the homogeneous good. They are ranked in

descending order of ability and agent i can choose between being a doctor providing health

43If λαx−1
(

αz

αx

1−β
β + 1

)−αx

> 1, then all individuals above a certain ability threshold choose to be doctors

while all those below it choose to be widget makers. This is counterfactual.
44If the distributions of x and z are only asymptotically Pareto, then Proposition 1 applies asymptotically.
45This intuition does not generalize to the CES case where part of the effect of a rise in income inequality

on doctors’ income inequality results from the outside option effect instead of purely the demand side.
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services of quality z (i) and earning w (z (i)) or working in the homogeneous good sector earning

y (i). y and z are distributed according to the counter-cumulative distributions:

Gy (y (i)) = Gz (z (i)) = i with Gy = (ymin/y)
αy and Gz = (zmin/z)

αz .

Further λM > 1 so that all consumers can get health services.

Assume that the equilibrium is such that for individuals of a sufficiently high level of ability,

some choose to be doctors and others to work in the homogeneous good sector. Then, for i low

enough, agents must be indifferent between becoming a doctor or working in the homogeneous

good sector, so that w (z (i)) = y (i). Hence, the wage function obeys:

w (z) = ymin (z/zmin)
αz/αy . (42)

Market clearing for health care services above z implies:(
xmin

m (z)

)αx

= λM

∫ ∞

z

µ (ζ) gz (ζ) dζ, (43)

where µ (ζ) denotes the share of potential doctors who choose to be doctors. Plugging this

expression in the first order condition (2) together with (42), we obtain:

∫ ∞

z

µ (ζ) gz (ζ) dζ =
1

λM

 β
1−βλxmin(

αz

αy
+ β

1−β

)
ymin

αx (
z

zmin

)−αx
αz
αy

. (44)

Taking the derivative with respect to z, we get:

µ (z) =
αx
αy

1

λM

 β
1−βλxmin(

αz

αy
+ β

1−β

)
ymin

αx (
z

zmin

)αz

(
1−αx

αy

)
. (45)

Since µ (z) ∈ (0, 1), this case is only possible if αy ≤ αx, that is consumers’ income dis-

tribution has a fatter tail than the outside option for potential doctors (and, if αy = αx,
αx

αy

1
λM

(
αyβλxmin

(αz(1−β)+βαy)ymin

)αx

≤ 1). Then, for w high enough, doctors’ income distribution obeys:

Pr (W > w) =

∫ ∞

zmin

(
w

ymin

)αy
αz

µ (ζ)

(
zmin

ζ

)αz dζ

ζ
=

1

λMαz

(
αyβλxmin

αz (1− β) + βαy

)αx

w−αx .

Therefore, for w high enough, doctors’ income is distributed like their patients’ income.

With αy > αx or αy = αx together with αx

αy

1
λM

(
αyβλxmin

(αz(1−β)+βαy)ymin

)αx

> 1, then above a

certain threshold, all potential doctors will choose to be doctors, so that the model behaves like
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that of Section 3.1, and the outside option is “mute”.

Therefore, in all cases, income is Pareto distributed at the top with shape parameter αx.

Changes in αy have no impact on doctors’ top income inequality.

A.7 Doctors moving: Proof of Proposition 5

With no trade in goods between the two regions, we can normalize the price of the homogeneous

good to 1 in both. As doctors only consume the homogeneous good, doctors’ nominal wages

must be equalized in the two regions and the price of health care of quality z must be the

same in both regions. From the first order condition on health care consumption, the matching

function is also the same: doctors of quality z provide health care to widget makers of income

m (z) in both regions. Moreover, the least able potential doctor who decides to become a doctor

must have the same ability zc in both regions.46

We define by φ (z) the net share of doctors initially in region B with ability at least z who

decide to move to region A. Labor market clearing in A implies that, for z ≥ zc,(
xAmin/m (z)

)αA
x = λµ (1 + φ (z)) (zmin/z)

αz . (46)

There are initially µ
(
zmin

z

)αz
doctors with ability at least z in each region and a share φ (z) of

those move from region B to region A. As each doctor serves λ patients, after doctors have

relocated the total supply over a quality z in region A is given by the right-hand side of (46).

Total demand corresponds to region A patients with an income higher than m(z), of which

there are P (X > m (z)). The same equation, replacing φ(z) by −φ(z), holds in region B:

(
xBmin/m (z)

)αB
x = λµ (1− φ (z)) (zmin/z)

αz . (47)

Since the two regions are of equal size, total demand for health services must be the same

and on net, no doctors move: φ (zc) = 0. Summing up the market clearing equations (46) and

(47) for z = zc, we obtain zc = (λµ)
1
αz zmin, as in the baseline model.

Similarly, combining (46) and (47) for any z, we obtain

xAmin (1 + φ (z))
− 1

αA
x = xBmin

(
z

zc

) αz
αB
x
− αz

αA
x

(1− φ (z))
− 1

αB
x . (48)

Since αBx > αAx , we find that
(
z
zc

) αz
αB
x
− αz

αA
x tends towards 0. As a net share φ (z) ∈ (−1, 1). If

φ (z) → −1, the left-hand side tends toward infinity and the right-hand side toward 0, which is

46Here, potential doctors who decide to work in the homogeneous good sector would go to region B since
αA
x > αB

x implies that xA
min < xB

min. This is without consequences: alternatively, we could have assumed that
the outside option of doctors is to produce x̂, which is identical between the two regions. In that case potential
doctors who work in the homogeneous sector would not move.
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a contradiction. Therefore 1 + φ (z) must be bounded below, which ensures that the left-hand

side is bounded above 0. If φ (z) ̸→ 1, then the right-hand side tends toward 0, which is also

a contradiction. Therefore asymptotically, we must have that φ (z) → 1: nearly all the best

doctors move to the most unequal region.

Plugging (46) in (2), we get that in region A:

w′ (z) z +
β

1− β
w (z) =

βλ

1− β
(1 + φ (z))

− 1

αA
x

(zc
z

)− αz
αA
x .

Therefore, asymptotically:

w (z) → λβαAx 2
− 1

αA
x

αz (1− β) + βαAx

(
z

zc

) αz
αA
x

(49)

As φ (z) → 1, doctors’ talent is asymptotically distributed with Pareto coefficient αz in region

A after the location decision. For z high enough, there are 2µ
(
zmin

z

)αz
doctors eventually

located in region A. Then, as in the baseline model, doctors’ income is asymptotically Pareto

distributed with coefficient αAx in A. Further, using (48), we get:

1− φ (z) → 2α
B
x /α

A
x
(
xBmin/x

A
min

)αB
x (z/zc)

αz(1−αB
x /α

A
x ) . (50)

Therefore, the ex post talent distribution of doctors in region B is still Pareto but now with a

coefficient α′
z = αz

αB
x

αA
x
. In region B, the probability that a doctor earns at least w̃ obeys:

PB
doc (W > w̃) =

µP (Z > w−1 (w̃)) (1− φ (w−1 (w̃)))

µP (Z > zc)
,

where w above denotes the wage function. Indeed, there are initially µP (Z > w−1 (w̃)) doctors

in region B with a talent sufficient to earn w̃. A share of 1− φ (w−1 (w̃)) of these doctors stay

in B. Moreover, the total mass of active doctors in region B is given by µP (Z > zc), since

overall there is no net movement of actual doctors. Using (49), we get:

w−1 (w̃) → zc

(
w̃
αz (1− β) + βαAx

λβαAx
2

1

αA
x

)αA
x

αz

.

Using this expression and (50) we get that:

PB
doc (W > w̃) =

(
zc

w−1 (w̃)

)αz (
1− φ

(
w−1 (w̃)

))
→
(
xBmin

xAmin

λβαAx
αz (1− β) + βαAx

1

w̃

)αB
x

.

Therefore, doctors’ income in region B is Pareto distributed with shape parameter αB as in the
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baseline model. This establishes Proposition 5.

A.8 Quality-quantity tradeoff

We consider the model of Section 3.3.4.47 With ω (z) the price per unit of health care of quality

z, the budget constraint faced by a consumer with income x is:

ω (z) q + c ≤ x,

We restrict attention to the case θ ≤ 1: for θ > 1, the problem is ill-defined because consumers

can achieve infinite utility by purchasing an infinitesimal amount of health-care of infinite

quality. We establish:

Proposition 10. 1) In the Cobb-Douglas case, θ = 1, there is not positive assortative matching.

Doctors’ income is Pareto distributed with inverse Pareto parameter γ
1−γα

−1
z , independent of

widget makers’ top income inequality.

2) When quality and quantity are complements (θ < 1), and αz > αx − 1, there is positive

assortative matching; doctors’ income is asymptotically Pareto distributed with inverse Pareto

parameter

α−1
w = α−1

x

(
1 + α−1

z

)
− α−1

z < α−1
x .

Doctors’ top income inequality is increasing in widget makers’ top income inequality.

3) When quality and quantity are complements (θ < 1), and αz < αx − 1, there is positive

assortative matching but doctors’ income is bounded.

Proof. We solve in turn the complement and then Cobb-Douglas cases.

Complement case: θ < 1. We solve for the consumer maximization problem in two steps.

First, we solve for the optimal allocation between quantity and quality for given healthcare

expenditures. Second, we solve for the consumer’s problem taking into account the relationship

between quality and quantity. In a first step, a consumer maximizes:

H =
(
(1− γ)

1
θ q

θ−1
θ + γ

1
θ z

θ−1
θ

) θ
θ−1

such that ω (z) q ≤ h.

Plugging the budget constraint in the objective function, we get that the consumer solves:

max
z
H (z, h) =

(
(1− γ)

1
θ

(
h

ω (z)

) θ−1
θ

+ γ
1
θ z

θ−1
θ

) θ
θ−1

. (51)

47Utility functions where the quality and quantity of goods do not aggregate in a Cobb-Douglas way have
been considered by Rosen (1974) or Becker and Lewis (1973) in the context of fertility and education decision.
In the latter case, Mogstad and Wiswall (2016) specifically look at the CES case. None of these papers, however,
consider a matching mechanism like ours.
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We obtain the first order condition:

∂H

∂z
=
(
γ

1
θ z−

1
θ − (1− γ)

1
θ h

θ−1
θ ω (z)

1−2θ
θ ω′ (z)

)
H

1
θ = 0 (52)

which leads to the optimal z satisfying:

z∗ =
γ

1− γ
h1−θω (z∗)2θ−1 ω′ (z∗)−θ . (53)

The solution is interior and a maximum provided that the second order condition holds which

stipulates that at the optimum we must have ∂2H
(∂z)2

< 0. We have that

∂2H

(∂z)2
(z∗, h) = −γ

1
θ g (z∗)

ω′ (z)

ω (z∗)
(z∗)−

1
θ H

1
θ

with g (z) ≡ 1

θ

1

εω (z∗)
+

1− 2θ

θ
+
ω (z∗)ω′′ (z∗)

(ω′ (z))2
(54)

where we introduced εω (z) ≡ zω′(z)
ω(z)

the elasticity of the price function. Therefore at an interior

optimum, we must have g (z∗) > 0. Differentiating (52), we obtain:

dz∗

dh
=

∂2H
∂h∂z(

− ∂2H
(∂z)2

) =

(
1− γ

γ

) 1
θ 1− θ

θg (z∗)
(z∗)

1
θ h

−1
θ ω (z∗)

1−θ
θ .

Therefore, we have that for an interior solution health care quality increases with health care

expenditures, dz
∗

dh
> 0 since θ < 1. Taking that relationship into account, we can rewrite

H (z) = zγ
1
θ

(
1

εω (z)
+ 1

) θ
θ−1

, (55)

with
dH

dz
= γ−

1−θ

θ2 g (z)
θ

1− θ

[
H (z)

zγ
1
θ

] 1
θ

,

and
dH

dz
=
∂H

∂z
+
∂H

∂h

dh

dz
=
∂H

∂h

1
dz
dh

= γ−
1−θ

θ2 g (z∗) (z∗)−
1
θ
H

1
θ θ

1− θ
> 0, (56)

from the second order condition. In addition, the quantity of health care demanded by a

consumer consuming quality z is then given by

q (z) = z

(
1− γ

γ

) 1
1−θ

(εω (z))
θ

1−θ . (57)
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Using (53), we can then rewrite the original problem as

maxu (z, c) = γ
β
θ

(
ω (z∗)

ω′ (z∗)
z−

1
θ + γ

1
θ z

θ−1
θ

) θ
θ−1

β

c1−β,

s.t.

(
1− γ

γ
zω (z)1−2θ ω′ (z)θ

) 1
1−θ

+ c = x.

Taking the ratio of the two first order conditions, we obtain:

β dH
dz
c

(1− β)H
=

(
1− γ

γ

) 1
1−θ d

(
zω (z)1−2θ ω′ (z)θ

) 1
1−θ

dz
.

As before, we denote by m (z) the income of patients of a doctor of quality z. Then plugging

in the budget constraint in the previous expression, we get:

β
dH

dz

(
m (z)−

(
zω (z)1−2θ ω′ (z)θ

) 1
1−θ

)
(58)

=

(
1− γ

γ

) 1
1−θ d

(
zω (z)1−2θ ω′ (z)θ

) 1
1−θ

dz
(1− β)H.

We note that
d
(
zω (z)1−2θ ω′ (z)θ

)
dz

= θg (z)
(
zω (z)1−2θ ω′ (z)θ

) ω′ (z)

ω (z)
.

Using this expression, together with (56) into (58), and noting that at the optimum we always

have g (z) ̸= 0, we get:

βz−
1
θ

(
m (z)−

(
zω (z)1−2θ ω′ (z)θ

) 1
1−θ

)
= γ

1−θ

θ2

(
1− γ

γ

) 1
1−θ (

zω (z)1−2θ ω′ (z)θ
) 1

1−θ ω′ (z)

ω (z)
(1− β)H

θ−1
θ .

Then using (55), we obtain:

βm (z) = zω (z) (εω (z))
θ

1−θ

[
β +

(
1− γ

γ

) 1
1−θ

(1− β) +

(
1− γ

γ

) 1
1−θ

(1− β) εω (z)

]
. (59)

This differential equation characterizes the optimal behavior of consumers.

Next, market clearing in health care imposes that the quantity of health care provided by
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doctors of quality at least z must match consumption by consumers of income at least m (z):

λµ

(
z

zmin

)−αz

=

∫ ∞

m(z)

q
(
m−1 (x)

)
αxx

−(αx+1)xαx
mindx.

Differentiating with respect to z, we obtain:

−αzλz−αz−1µzαz
min = −m′ (z) q (z)αxm (z)−(αx+1) xαx

min.

Plugging in (57), we get a second differential equation that characterizes market clearing:

z−αz−2αzλµz
αz
min = m′ (z)

(
1− γ

γ

) 1
1−θ

(εω (z))
θ

1−θ m (z)−(αx+1) αxx
αx
min. (60)

Together with initial conditions determining the cut-off zc and ensuring that w (zc) = xmin,

equations (59) and (60) fully characterize the equilibrium.

We are interested in the asymptotic behavior of the solution. Multiplying equations (59)

and (60) with each other, we get[(
β

(
γ

1− γ

) 1
1−θ

+ 1− β

)
ω (z) z−αz−1 + (1− β) z−αzω′ (z)

]
αzλµz

αz
min (61)

= m′ (z)m (z)−αx βαxx
αx
min.

We assume that the solution behaves regularly in the sense that εω (z) admits a limit in [0,∞]

(we know that εω (z) ≥ 0). We consider in turn the three possible cases of an infinite limit, a

finite but positive limit and a null limit.

Case 1: εω (z) → ∞. Then, ω (z) must grow faster than any power function and ω (z) z−αz−1

becomes negligible in front of z−αzω′ (z). Using (61), we can write:

[
−αzz−αz−1ω (z) + z−αzω′ (z)

]
(1− β)αzλµz

αz
min ∼ αxm

′ (z)m (z)−αx xαx
minβ.

Integrating, we get

αzλµz
αz
min (1− β)ω (z) z−αz +K ∼ αx

1− αx
m (z)1−αx xαx

minβ,

for some constant K. However, while the RHS tends toward 0, the LHS becomes unbounded,

leading to a contradiction. This case cannot be an equilibrium.

Case 2: εω (z) → ω1 with ω1 > 0 and finite. Then we can write ω (z) = ω0z
ω1 + o (zω1) and
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ω′ (z) = ω0ω1z
ω1−1 + o (zω1−1). Using (61), we can write

ω0

[
β

(
γ

1− γ

) 1
1−θ

+ 1− β + ω1 (1− β)

]
zω1−αz−1αzλµz

αz
min ∼ m′ (z)m (z)−αx βαxx

αx
min.

Integrating, we obtain

ω0

[
β
(

γ
1−γ

) 1
1−θ

+ 1− β + ω1 (1− β)

]
ω1 − αz

zω1−αzαzλµz
αz
min +K ∼ 1

1− αx
m (z)1−αx βαxx

αx
min,

for some constant K. As the RHS tends toward 0, the LHS must also tend toward 0, which

requires both that K = 0 and that ω1 < αz. Then, we get that m (z) ∼ m0z
αz−ω1
αx−1 with

m0 =

 (αz − ω1) βαxx
αx
min

(αx − 1)ω0

[
β
(

γ
1−γ

) 1
1−θ

+ 1− β + ω1 (1− β)

]
αzλµz

αz
min


1

αx−1

> 0.

Plugging that expression in (59), we get

βm0z
αz−ω1
αx−1 ∼ ω0z

ω1+1ω
θ

1−θ

1

[
β + (1− β)

(
1− γ

γ

) 1
1−θ

(1 + ω1)

]
.

This implies that we must have

αz − ω1

αx − 1
= ω1 + 1 ⇒ ω1 =

αz + 1− αx
αx

.

The solution assumes that ω (z) is increasing, so that this is only an equilibrium if ω1 > 0, that

is for αz > αx − 1. As αx > 1, we note that the condition ω1 < αz is automatically satisfied.

ω0 is then determined by ensuring that βm0 = ω0ω
θ

1−θ

1

[
β + (1− β)

(
1−γ
γ

) 1
1−θ

(1 + ω1)

]
.

We still need to check that g (z) > 0 to satisfy the second order condition. To do so, we

first compute ω′′ (z). Log-differentiating (59), we get

zm′ (z)

m (z)
=

1

1− θ
+

1− 2θ

1− θ
εω (z) +

θ

1− θ

zω′′ (z)

ω′ (z)
+

(1− β) εω (z)
(
1 + zω′′(z)

ω′(z)
− εω (z)

)
.

β
(

γ
1−γ

) 1
1−θ

+ 1− β + (1− β) εω (z)

(62)

From (60), we get that m′ (z) is asymptotically a power function and that zm′(z)
m(z)

must tend

toward a constant. Then (62) implies that zω′′(z)
ω′(z)

also tends toward a constant, which must be
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ω1 − 1, so that we can write ω′′ (z) = ω0ω1 (ω1 − 1) zω1−2 + o (zω1−2). Using (54), we get

g (z) ∼ 1

θ

1

ω1

+
1− 2θ

θ
+
ω1 − 1

ω1

∼ 1− θ

θ

1 + ω1

ω1

> 0,

so that the SOC is satisfied.

Doctors’ income w (z) = λω (z) is then asymptotically Pareto distributed with

Pr (W > w) = Pr

(
Z >

(
w

λω0

) 1
ω1

)
∼ zαz

c

(
w

λω0

)−αw

,

where αw ≡ αz/ω1. We can rewrite the latter as:

α−1
w =

αz + 1− αx
αzαx

= α−1
x

(
1 + α−1

z

)
− α−1

z ,

which is increasing in both α−1
x and α−1

z . In addition, we note that dα−1
w

dα−1
x

= 1 + α−1
z > 1.

Case 3: εω (z) → 0, then ω (z) grows slower than any power function and ω′ (z) is negligible

relative to ω(z)
z
. Using (61), we can write:

λµzαz
min

(
β

(
γ

1− γ

) 1
1−θ

+ 1− β

)(
αzz

−αz−1ω (z)− z−αzω′ (z)
)
∼ αxm

′ (z)m (z)−αx xαx
minβ.

Integrating, we get

λµ

(
β

(
γ

1− γ

) 1
1−θ

+ 1− β

)
zαz
minz

−αzω (z) +K ∼ 1

αx − 1
αxm (z)1−αx xαx

minβ,

for some constant K. z−αzω (z) and m (z)1−αx tend toward 0, so that K = 0. We then obtain:

m (z) ∼

 zαz

ω (z)

βαx
αx − 1

xαx
min

λµ

(
β
(

γ
1−γ

) 1
1−θ

+ 1− β

)
zαz
min


1

αx−1

. (63)

Plugging this in (59), we obtain

β

[
zαz

ω (z)

βαx
αx − 1

xαx
min

λµzαz
min

] 1
αx−1

∼ zω (z) (εω (z))
θ

1−θ

(
γ

1− γ

) 1
1−θ

1
αx−1

[
β +

(
1− γ

γ

) 1
1−θ

(1− β)

] αx
αx−1

.
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Rearranging terms, we get

[
βαxαx
αx − 1

xαx
min

λµzαz
min

] 1−θ
(αx−1)θ

z
αz−αx+1

αx−1
1−θ
θ

−1 (64)

∼ ω′ (z)ω (z)
αx

αx−1
1−θ
θ

−1

(
γ

1− γ

) 1
θ

1
αx−1

[
β +

(
1− γ

γ

) 1
1−θ

(1− β)

] (1−θ)αx
θ(αx−1)

.

Integrating, we get

K − αx
αx − 1− αz

[
βαxαx
αx − 1

xαx
min

λµzαz
min

] 1−θ
θ

1
αx−1

z−
αx−1−αz

αx−1

∼
(

γ

1− γ

) 1
θ

1
αx−1

[
β +

(
1− γ

γ

) 1
1−θ

(1− β)

] (1−θ)αx
θ(αx−1)

ω (z)
1−θ
θ

αx
αx−1 ,

for some constant K. The RHS is increasing in ω (z) and the LHS is only increasing in ω (z)

if αx − 1 > αz, so that this condition needs to be met for the equilibrium to be in case 3.

Assuming that this is the case, we get

ω (z) ∼ Ω− ω0z
−ω1 with Ω, ω0 > 0 and ω1 =

αx − 1− αz
αx − 1

> 0.

Therefore the price of health care quality is bounded above and so is doctors’ income.

We then need to check that the SOC holds. From (64), we get

ω′ (z) (65)

∼ Ω1− α
αx−1

1−θ
θ

(
1− γ

γ

) 1
θ

1
αx−1

[
β +

(
1− γ
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) 1
1−θ
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] (θ−1)αx
θ(αx−1) [

βαxαx
αx − 1

xαx
min

λµzαz
min

] 1−θ
(αx−1)θ

z
αz

αx−1
1−θ
θ

− 1
θ .

Equation (62) still holds and plugging (60) in it, we can write:

(
γ

1− γ

) 1
1−θ m (z)αx z−αz−1αzλµz

αz
min(

zω′(z)
ω(z)

) θ
1−θ

αxx
αx
min

=
1

1− θ
+

1− 2θ

1− θ
εω (z) +

θ

1− θ

zω′′ (z)

ω′ (z)
+

(1− β) εω (z)

β
(

γ
1−γ

) 1
1−θ

+ 1− β + (1− β) εω (z)

(
1 +

zω′′ (z)

ω′ (z)
− εω (z)

)
.

Using (63) and (65), we can write

ω′′ (z) ∼
(
1− θ

θ

αz
αx − 1

− 1

θ

)
ω′ (z)

z
.
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Plugging this expression and (65) in (54), we obtain

g (z) ∼ 1− θ

θ

αz
αx − 1

1

εω (z∗)
> 0

which ensures that the second order condition is asymptotically satisfied.

Bringing together cases 1), 2) and 3) established Proposition 10 2) and 3).

Cobb-Douglas case (θ = 1). Then, the consumer maximizes

max
z
H (z, h) = h1−γ

zγ

(ω (z))1−γ
. (66)

The solution of this problem is independent of z, so, if not indifferent, all consumers would

consume exactly the same health care quality. This cannot be an equilibrium, so consumers

must be indifferent across levels of health care quality and we must have ω (z) ∝ z
γ

1−γ . Therefore,

there exists a quality adjusted price of health care taken as given by doctors. Doctors’ income

is Pareto distributed with shape parameter αz
1−γ
γ
.

This Proposition shows that our results can be generalized as long as the possibility to

substitute quantity for quality remains limited (θ < 1). Intuitively, in the Cobb-Douglas case

(θ = 1), it is possible to rewrite the health care aggregate as a function of quality-adjusted

quantity of health care (q̃ ≡ z
γ

1−γ q so that H = q̃1−γ). Then, health care has a common quality-

adjusted price, and the payment schedule for doctors is log-linear in their ability. As such,

doctors’ income inequality is entirely determined by their ability distribution and not widget

makers’ income distribution.

In contrast, in the complement case, there is positive assortative matching as in the baseline

model. High-income widget makers consume not only higher quality but now also more health

care. With a fixed supply of health care, doctors of a given ability are matched with patients of

a lower income than in the baseline model (m (z) is proportional to z
αz+1
αx instead of z

αz
αx in the

baseline). As long as top doctors are not too abundant (αz > αx− 1), doctors’ incomes are still

asymptotically Pareto distributed—though top income inequality is lower among doctors than

widget makers (α−1
w < α−1

x ). An increase in widget makers’ top income inequality spills over

into doctors’ top income inequality more than one-for-one because the demand for quantity of

health care services also increases disproportionately at the top: dα−1
w

dα−1
x
> 1. Moreover, doctors’

top income inequality decreases as their ability distribution becomes more unequal: dα−1
w

dα−1
z
< 0,

as high-quality health care becomes cheaper when it becomes more abundant. Interestingly,

the elasticity of substitution θ has no effect on the size of the spillovers.
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A.9 Partly tradable health care

Consider the set-up of Section 3.3.5. Without loss of generality, assume that region 1 is the

most unequal; that is α1
x = mins {αsx}. Again without loss of generality, assume that αsx > α1

x

for s ̸= 1. Denote by κs (x) the share of widget makers of ability x who are mobile in region s.

We assume that limx→∞ κ1 (x) = κ > 0; that is, a positive mass of patients travel in the richest

region. In all regions s ̸= 1, for x large enough, the set of potential patients with income above

x will be dominated by traveling patients from region 1. Since the equilibrium still features

positive assortative matching, for all doctors with z high enough in all regions, most doctors

will be matched with a patient from region 1. The analysis of the baseline model (specifically

Section A.3.1) applies and doctors’ income in each location is asymptotically Pareto distributed

with shape parameter α1
x.

B Data Appendix

B.1 Details of data construction and Figure 1

Sample Selection.We restrict to Census/ACS respondents who are age 25 or older, and (1)

have positive income and are categorized as “employed, at work” according to the variable ESR

(employment status recoded) or (2) have positive income, are not in the labor force, and are

age 65 or older. The latter group approximates retirees. For the positive income restriction,

income refers to whichever definition is being used; typically wage income, but in robustness

checks we also use all earned income. All constructed variables use Census weights (perwt).

Construction of Figure 1.The green series (with circles) shows the actual change in log income

within each income percentile from 1980 to 2012. To decompose this into between- and within-

occupation effects, we calculate two sets of statistics for 1980 and 2012. First, the percentiles

of average occupational log wage income where occupations are weighted by occupation size.

Then within each of these occupational percentile groups, we rank individuals based on their

income and group them in 500 bins, and compute the deviation between log income in that

bin and that occupational percentile group’s average log earnings. The “Between-Occupation

Effects Only”series (with red triangles) shows the counterfactual shift in the income distribution

if occupational percentiles’ incomes had changed to 2012 levels, but the corresponding bins of

differences around each percentile (500 for each of the 100 percentiles) had remained unchanged.

The “Within-Occupation Effects Only” series (with blue squares) shows the counterfactual shift

in the income distribution if the occupational percentiles’ wage incomes had remained constant

at the 1980 level, but the bins around each percentile had changed to 2012 levels.

Independent Variable Construction in the Regression Analysis.For a given occupation of

interest (e.g. doctors) and a given percentile cutoff that defines the upper tail of the income

distribution, such as the 90th (local) percentile, we do the following:
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1. Among uncensored observations, calculate the income at that percentile in that LMA-

year among all persons regardless of occupation. Drop observations below that income level.

2. Then, drop the occupation of interest, that is, the occupation in the dependent variable.

3. Then, calculate the inverse Pareto parameter as described in the main text. We ad-

just equation 13 to account for a few censored observations. Consider a sample of draws of

a random variable X̃ which follows a Pareto distribution P (X̃ > x̃) = (x̃/xmin)
−α. With

censoring, the observed value is x = min{x̃, x̄} for some known censoring point x̄ > xmin.

Denote Ncen and Nunc, the number of censored and uncensored observations, respectively,

and Nunc the set of uncensored observations. The maximum likelihood estimator of α−1 is
1

Nunc

[∑
i∈Nunc

ln
(

xi
xmin

)
+Ncen ln

(
x̄

xmin

)]
. Armour, Burkhauser and Larrimore (2016) use this

method with Current Population Survey data (March supplement) to show that income in-

equality trends match those found by Kopczuk, Saez and Song (2010) using Social Security

data.

Dependent Variable Construction in the Regression Analysis.For a given occupation of inter-

est and a given cutoff that defines the upper tail of the income distribution, such as the 90th

percentile of the local general population, we do the following:

1. Repeat step 1 of the construction of the independent variable.

2. Then, keep only observations from the outcome occupation of interest (e.g. doctors).

3. Then, calculate the inverse Pareto parameter correcting for censoring.

Instrument Construction in the Regression Analysis.For each occupation of interest o, we con-

struct our shift-share instrument as follows. We first identify the 10 most common occupations

(excluding o) in the upper tail of each LMA in 1980, where the upper tail corresponds to the

90th percentile of the local uncensored observations. We define the set of shift-share occupa-

tions, K−o, as the union of all these occupations, which corresponds to around 30 occupations.

Then, for each occupation κ inK−o, we calculate the income at the percentile cutoff defining the

upper tail (e.g., 90th) among uncensored observations nationwide. Observations with income

below that level are dropped. Then, for each region s, we drop respondents residing in that

region and calculate the nationwide inverse Pareto parameter for each occupation (α−1
κ,t,−s). We

then calculate the weights (or shares) for occupation κ ∈ K−o in the instrument as the fraction

of the upper tail population that is employed in κ in 1980. The weights are not normalized,

and thus sum to less than one. Retirees are excluded from the instrument.

Measures of α−1 and sample selection. In our main specifications we estimate α−1 on the sample

of the occupation that is in the top 10% of income of the general population. For the samples

of New York State and nationwide we illustrate how the estimated α−1 for doctors depends on

the size of the sample (we use New York State and not New York LMA for disclosure reasons).

Our data here is the same as that used for the calibration exercise in Section 6. We defer a
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Figure B.1: Estimated α−1 for doctors for various cutoffs.
(a) New York State (b) National

Notes: For New York State (Panel (a)) and the entire United States (Panel (b)) we calculate α−1 with an increasing fraction of
doctors used (excluding those with residents level incomes). Around 80 per cent of doctors are in the top 10% of the general
population in 2012. The numbers give the difference between 1980 and 2012 for the particular per cent of doctors used.

detailed discussion of data and data cleaning until then.

Figure B.1.a shows the α−1 estimated for 1980 and 2012 on increasing fractions of doctors in

New York State once we restrict attention to doctors with incomes higher than those in medical

residency. When using the highest earning 10% of doctors we get a difference between 1980

and 2012 of 0.101. When we use half the observations we get a difference of 0.09. The fraction

of (non-resident) doctors who are in the top 10% of the general population is around 80% in

2012. When we use this fraction we get 0.173.48 Panel (b) performs the same calculation for

the nation as a whole with the same points highlighted.

Regression Details.Regressions are weighted by the number of observations in the outcome

occupation above the cutoff in that LMA-year. Only the 50 most populous LMAs as of 1980

are included. We estimate the regressions with the Stata commands reghdfe and ivreghdfe.

Standard errors are clustered at the LMA level.

B.2 Occupation and LMA definitions

Occupations.We use the occupation classification constructed by Deming (2017) which ensures

consistent occupational groups throughout our sample. We create some additional groupings:

We combine (1) all engineering occupations into one, (2) all managers (excluding those work-

ing in real estate) into one, (3) combine primary and secondary school teachers together, (4)

respiratory, occupational, physical, speech and not-elsewhere-classified therapists into one, (5)

hairdressers and barbers into one, and (6) waiters and bartenders.

Geography.We use Labor Market Areas (LMAs) defined by Tolbert and Sizer (1996). These are

aggregates of the 741 Commuting Zones (CZs) popularized by Dorn (2009). Both commuting

zones and labor market areas are defined based on the commuting patterns between counties.

48For New York State the fraction of (non-resident) doctors in the top 10% is around 90% in 1980. When
we use the year-specific cutoff we get a difference of 0.13.
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CZs are unrestricted in size, whereas LMAs aggregate CZs to ensure a population of at least

100,000. LMAs are constructed such that they can be driven through in a matter of a few

hours, e.g. Los Angeles or New York. Given that our estimation strategy relies on a relatively

high number of observations of a particular occupation, LMAs are a more natural choice.

B.3 Occupational characteristics

We use the Occupational Information Network (O*NET) 10.0 June 2006 release of occupation

characteristics, drawing on two traits in particular: “Customer and Personal Service” from the

list of “Knowledge” traits, and “Performing for or Working Directly with the Public” from the

list of “Work Activities”. Each trait is scored on a scale from 0 to 7 based on the “level” of

skill in that trait required for the occupation. We crosswalk from O*NET-SOC codes to 2000

Census occupation groups (occ2000) using the SOC-to-occ2000 weights used by Acemoglu and

Autor (2011) (available at https://economics.mit.edu/people/faculty/david-h-autor/

data-archive). We then collapse from occ2000 to the occupation definition used in this paper

(developed by David Deming (2017), which we call occ1990dd) as described in the main text.

For this collapse, we take the weighted average of each O*NET trait at the occ1990dd level,

where the weights correspond to the fraction of each occ1990dd population derived from each

occ2000 category. We calculate these weights using the 2000 public-use Census sample. Finally,

once we have O*NET traits at the occ1990dd level, we normalize the traits to be in percentile

rankings (from 0 to 1) rather than on the 0 to 7 scale. Each occupation is assigned their

percentile ranking in the occupation distribution of the trait (weighted by occupation size).

These two normalized traits are the bases of Figure 3.

We use Blinder (2009)’s measure of offshorability as an (inverse) measure of the extent

to which an occupation serves the local market. Based on O*NET characteristics for each

occupation (using the 2006 version), he manually assigns an ordinal score between 0 and 100

for 817 occupations, with 100 being completely offshorable, and anything less than 25 being

completely non-offshorable. In most instances, the O*NET occupation codes correspond one-

for-one with the Standard Occupation Classification (SOC) from the US Department of Labor.

In his appendix, he lists the SOC occupations scored as greater than 25. When two or more

O*NET occupation codes correspond to a single SOC code, and those O*NET occupations are

deemed to be substantially different in their offshorability, he keeps the O*NET occupation

codes separate, as opposed to aggregating them to the SOC code level. In the few cases

in which that occurs, he only reports the O*NET occupation codes scored as greater than

25. For example, Financial Managers are a single category in SOC, but are split into three

categories in the O*NET classification: 11-3031.00 Financial Managers, 11-3031.01 Treasurers

and Controllers, and 11-3031.02, Financial Managers, Branch or Department. Blinder only

reports the one sub-type of financial manager that he considers partially offshorable, and does
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not list which of the three O*NET sub-types it represents, just the higher-level SOC code.

C Assortative Matching in Healthcare and Physicians’ Scale
This Appendix examines the model’s first prediction: positive assortative matching: We use

health spending and physician price data to construct income gradients of medical spending

and medical prices. In addition, we discuss the evolution of physicians’ scale.

C.1 Spending and price data

We use medical spending data from the Medical Expenditure Panel Survey (MEPS), a nationally

representative survey of families’ health insurance coverage and medical spending conducted

annually by the Agency for Healthcare Research and Quality. We use the survey waves 2010-

2014 to match the five-year ACS data used in our main results. For each family in each year, we

calculate total medical spending and total dental spending. For families present in the survey

for multiple years, we average their annual spending and annual family income. We then take

logs of spending and income to estimate the income elasticity of spending.

We measure service provider prices using the Colorado All-Payer Claims Data (APCD-CO),

described in Clemens, Gottlieb and Molnár (2017). This data provides details on patient visits

for medical care, including the service provided (a 5-digit code established by the Healthcare

Common Procedure Coding System (HCPCS)) and the identity of the treating provider. It

covers “the majority of covered lives in the state across commercial health insurance plans,

Medicare (Fee-for-Service and Advantage), and Health First Colorado (Colorado’s Medicaid

program)”. To match the MEPS years, we select all payments made from 2010 to 2014. Cru-

cially, it indicates the patient’s residential zip code and the amount the provider was paid for

each service (whether by an insurer, directly by the patient, or both).49

We summarize provider prices across procedures and patients by computing markups. We

estimate markups as the provider fixed effects in a regression on the insurance claims data that

controls for procedure codes. Specifically, denoting rg,j,i as the amount paid to provider g for

performing procedure j on patient i, we estimate the following regression:

ln rg,j,i = φg + φj + εg,j,i (67)

where φ̂j are fixed effects for HCPCS procedure codes and φ̂g are fixed effects for provider g

that reflect each provider’s average mark-up.

We approximate patients’ income using the median family income in their residential zip

49Depending on the patient’s insurance contract and whether the patient has reached an annual deductible
or out-of-pocket maximum, the patient or the insurer may have to pay the physician’s fee for a particular
treatment. But regardless of who is liable, the amount that the physician expects to receive is governed by the
rate negotiated between the physician and the insurer, known as the “allowed charge.” We refer the reader to
Clemens and Gottlieb (2017) for institutional details about this price setting.
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Figure C.1: Engel Curve for Medical Spending
(a) Total Medical Spending

7.3

7.4

7.5

7.6

7.7

7.8

Ln
(T

ot
al

 F
am

ily
 E

xp
en

di
tu

re
s)

11 11.2 11.4 11.6 11.8 12 12.2 12.4 12.6
Ln(Total Family Income)

Elasticity in Top 50%: 0.288, # Families:  14008

(b) Dental Spending
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Notes: Panel (a) shows the relationship between annual medical spending and annual income, both in logs. The dots show mean
values in each vigintile of family income. The line shows a linear regression estimate on the micro-data, and reflects an elasticity
of 0.288. Panel (b) shows the same figure but for dental spending only. The elasticity is 0.421. Source: Authors’ calculations using
data from the Medical Expenditure Panel Survey.

code.50 We compute the mean of provider markups, φ̂g, among all provider visits from patients

in a given zip code z: φz = 1
Nvisit

∑
visit∈z

φ̂g. We then estimate φz = µ0 + µ1 ln (income)z + εz

while weighting observations by the number of underlying patient claims in z.

C.2 Results: medical spending, physician prices, and income

Figure C.1 shows Engel curves of total spending using MEPS data among the top 50% of the

family income distribution. Panel (a) shows all spending and Panel (b) shows dental spending,

as these are the two spending variables reported in the MEPS survey. The graph shows a binned

scatter plot, using 20 vigintiles of family income and the regression line computed on the micro

data. The positive relationship reflects an elasticity of 0.288 for total spending. That is, a 10%

increase in family income is associated with 2.88% more medical spending. An elasticity less

than 1 is consistent with the CES case described in Proposition 3.

Figure C.2 shows Engel curves for medical provider “prices” using the APCD-CO data de-

scribed above. The first panel shows results using all medical providers, while subsequent

panels show curves for different types of providers: physicians, dentists, physical and occu-

pational therapists, and psychologists. The elasticity among all providers combined is 0.096.

The gradients are statistically significant and positive for each occupation individually, with

the highest gradient among therapists at 0.189. The estimate of the price elasticity is likely

to be biased down because we use median family income in a zip code whereas an unbiased

estimate would require the average of log income—or, better yet, a link to exact family incomes.

This introduces a downward bias when zip codes vary in their local log income inequality. The

positive relationship is evident throughout the income distribution and not solely at the top.

These results, based on a cross-section, support our assortative matching prediction.

50We obtain data on median family income in each Zip Code Tabulation Area (areas that closely approximate
zip codes) from IPUMS NHGIS (Manson et al., 2017).
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Figure C.2: Engel Curves for Provider Prices
(a) All Providers
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(d) Therapists
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(e) Psychologists
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Notes: Each panel plots the relationship between log mark ups (normalized to mean zero across physicians)
charged by the medical provider who treats a patient, and family income (as proxied by the median income in
the patient’s zip code of residence). Calculation of the mark-up is described in the text above. The figures show
a binned scatter plot with 20 vigintiles and the slope of the regression line is the elasticity (shown in each figure).
Panel (a) shows the relationship for all medical providers; Panel (b) for physicians; Panel (c) for dentists; Panel
(d) for therapists; and Panel (e) for psychologists.

C.3 Some facts about physician scale

When taking our theory to the data, we primarily attribute changes in physicians’ income

inequality to changing inequality in the prices they charge—with a potential change in inequality

of physician scale (i.e. the quantity of patients per physician) resulting from the change in

prices. We cannot empirically test this assumption because the Census/ACS data do not

contain information on the quantity of care provided by physicians.

To provide some context on whether the physician scale (λ in our model) may have changed

differently across doctors, we access data from the National Ambulatory Medical Care Survey

(NAMCS). NAMCS is a sample of office-based physicians. Physicians are surveyed for a week

and report detailed information on their patient visits. For example, in 2000 the NAMCS had

1,200 reporting physicians and recorded 27,369 visits to those physicians during the sampling

week. We use this information to examine time trends in the variance of per-physician quantity

of care.

In the first step of the survey, physician j estimates their visit volume Vj for the upcoming

survey week. We do not observe Vj. Based on Vj, the surveyors then tell the physicians what
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Figure C.3: Standard Deviation in Physicians’ Share of Total Patient Visits.
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Notes: This figure plots the standard deviation in the share of NAMCS-surveyed visits each practitioner accounts for. If all
practitioners saw the same number of visits, this would be 0. The dashed series first controls for practitioner specialty and then
calculates the standard deviation of the residual. Specialty coding changed in 2008, so the series stops in 2007.

fraction of their visits to record in the survey, Fj, which is a decreasing function of Vj. After the

survey is conducted, the surveyor constructs patient visit sampling weights Wi(j) (where a visit

is indexed by i) that sum to the total estimated nationwide visits. Based on this, in a given

year, for physician j we calculate V̂j =
∑

iWi(j) and treat this as the quantity of medical care

provided. The share of all sampled visits performed by physician j is sj = V̂j/
(∑

j

∑
iWi(j)

)
.

Figure C.3 shows the standard deviation of sj in each year from 1992 to 2011. (The survey

sampling and enumeration method changed in 2012). This illustrates whether, on a nationwide

basis, some physicians have captured larger shares of overall patient visits. The blue line

shows the raw standard deviation and the red line the standard deviation after controlling for

practitioner specialty. In both cases, the variance was fairly stable from 1991 to 2011, suggesting

that there were no large secular trends in the ability of some doctors to capture disproportionate

shares of the market.

D Empirical Appendix

D.1 Additional tables of descriptive statistics

Table D.1 shows the ratio of the 98th to 90th percentiles for selected occupations in 1980 and

2012, as well as for the overall population. Table D.2 gives descriptive statistics for the largest

occupations in the top of the income distribution for the year 2000.

D.2 Additional empirical results

Figure D.1 represents the IV results of Table 3 in two binned scatter plots. In Panel D.1a,

we show the relationship between the shift-share instrument and non-physician inequality, i.e.

the first stage regression. Both of these are residuals based on regressions with year and LMA
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Table D.1: Ratio of 98th to 90th percentile of wage income for selected occupations

98th to 90th percentile ratio
Occupation 1980 2012 Change

Aerospace engineers 1.37 1.46 0.09
Chief executives and public administrators 1.63 2.42 0.80
Dentists 1.54 1.74 0.20
Financial managers 1.62 2.38 0.75
Financial service sales occupations 1.79 2.81 1.02
Lawyers 1.89 2.31 0.42
Managers and administrators, n.e.c. 1.90 1.80 -0.11
Physicians 1.50 1.72 0.23
Primary school teachers 1.26 1.33 0.07
Real estate sales occupations 1.94 2.17 0.23
Registered nurses 1.29 1.48 0.20
All occupations combined 1.70 1.99 0.29

Notes: The ratio of wage income at 98th percentile of the income distribution to wage income at the 90th percentile, for selected
occupations. The sample consists of employed workers with positive wage income. Source: Authors’ calculations using Decennial
Census and American Community Survey data

Table D.2: Descriptive Statistics for Top Occupations in 2000. Wage Income

Mean income Occupation’s share in:
Occupation $1000 top 10% top 5% top 1%

Managers excl. real estate 61 0.23 0.24 0.18
Chief executives and general
administrators, public administration 120 0.06 0.09 0.15
Engineers 63 0.05 0.04 0.01
Computer systems analysts and scientists 57 0.05 0.04 0.02
Lawyers and judges 98 0.04 0.05 0.07
Physicians 136 0.04 0.07 0.13
Sales workers, other commodities 53 0.04 0.04 0.03
Supervisors and proprietors, sales occupations 45 0.04 0.04 0.04
Financial managers 68 0.03 0.03 0.03
Other financial officers 61 0.02 0.02 0.03
Accountants and auditors 47 0.02 0.02 0.02
Postsecondary teachers 43 0.02 0.01 0.00
Securities and financial services sales occupations 102 0.01 0.02 0.04
Computer programmers 57 0.01 0.01 0.00
Real estate sales occupations 53 0.01 0.01 0.02
Supervisors, production occupations 43 0.01 0.01 0.01
Registered nurses 40 0.01 0.01 0.00
Supervisors, general office 37 0.01 0.01 0.01
Teachers, elm., prim., second. 35 0.01 0.00 0.00
Sales workers 29 0.01 0.02 0.01

Notes: For the top twenty occupations in the top ten percent of the national income distribution in 2000, column (1) reports mean
income from wage (for the whole population), where the (very few) censored values have been replaced with the state-level mean
income among those above the censoring point, and the final three columns show the occupation’s share of all earners in the top
ten, five, and one percent of the income distribution. Source: Authors’ calculations using Decennial Census.
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Figure D.1: Graphical Representation of the IV regression: residual top income inequality.
(a) (First Stage) Top income inequality vs.
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Notes: In Panel (a), we show the relationship between the shift-share instrument and non-physician inequality after residualizing
the controls, i.e. the first stage regression. Panel (b) shows the relationship between the instrument and physicians’ inequality, i.e.
the reduced form regression. Both are residualized based on regressions with the controls of column (6) in Table 3. For disclosure
reasons, we bin our LMA × year observations into 20 equal-frequency bins and plot the average value of the residuals in each.

dummies and the controls of column (6) in Table 3. For disclosure reasons, we bin our LMA

× year observations into 20 equal-frequency bins. We plot the average value of the residuals in

each bin. Panel D.1b shows the relationship between the instrument and physicians’ inequality,

i.e. the reduced form regression. In both cases, we see strong upward-sloping relationships. The

results are not driven by outliers.

Table D.3 shows the regressions results associated with the scatter plots of Figure 3 and

also considers the “importance” of customer service and working with the public.

Table D.3: Spillover t-stats and occupational characteristics

(1) (2) (3) (4) (5) (6)
Entirely Not Offshoreable -0.785

(0.400)

Offshore (Blinder) -0.928
(0.510)

Customer service - level 2.116
(0.736)

Customer service - importance 1.324
(0.734)

Working with public - level 1.098
(0.675)

Working with public - importance 1.520
(0.656)

Constant 1.359 1.332 -0.121 0.300 0.397 0.129
(0.338) (0.331) (0.408) (0.401) (0.370) (0.370)

Observations 30 30 30 30 30 30

Notes: This table shows the relationship between the t-stat of the spillover coefficients from the IV regressions (from Table 6) and five
characteristics of the 30 most common occupations in the top 10% These characteristics are: a measure of offshorability from Blinder
(2009) as well as four measures from O*NET: Level and importance of “Customer service and personal service” from Knowledge
Requirements and level and importance of “Performing for or working directly with the public” from Work Activities. O*NET
and Offshoreability measures are rescaled as percentiles. “Entirely Not Offshoreable” indicates that Blinder (2009) categorized the
occupation as effectively impossible to offshore—18 of the 30 occupations our list. *: p<0.1, **: p<0.05, ***: p<0.01.
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Table D.4: Earned Income

Doctors Dentists Real Estate Agents

OLS IV OLS IV OLS IV

α−1
−o 0.23 1.73 0.41 2.16 0.71 0.94

(0.22) (0.57) (0.36) (0.86) (0.15) (0.50)
Ln(Average Income) -0.30 -0.43 0.06 -0.06 -0.03 -0.05

(0.11) (0.11) (0.14) (0.13) (0.06) (0.06)
Ln(Population) -0.02 0.03 0.04 0.09 0.02 0.02

(0.03) (0.03) (0.04) (0.07) (0.03) (0.03)

N 200 200 200 200 200 200
F-Statistic 13.38 13.35 7.064

Notes: The table contains OLS and IV estimates exactly as in the baseline specification, except the outcome inequality measure is
constructed using earned income (instead of wage and salary income)

We next show the results discussed in Section 5.3. Tables D.4, D.7, D.8, D.9, D.10, and

D.11 are sufficiently discussed in the text and do not need additional description here.

Table D.5 show robustness checks for Physicians and Dentists. Columns (1)-(3) consider

variations of the baseline regressions on physicians: column (1) restricts to physicians who are

at least 35, column (2) to those who have not moved within the past 5 years (other mobility

questions are not available throughout our sample), and column (3) controls for specialty com-

position. We use data from the Area Resource File on the composition of specialties across

LMAs (we use numbers from 1985 for year 1980) and data from the Medical Group Manage-

ment Association (2009) on average and standard deviation of income by specialty in 2008.

We build four control variables: (1) the share of neurosurgeons, who are the specialty with

the highest mean income and the largest standard deviation; (2) the share of physicians in

the 8 highest earning specialties (excluding neurosurgeons); (3) the share of physicians in the

7 specialties with the lowest income; and (4) the share of physicians in the 4 specialties with

the largest standard deviation in income (excluding neurosurgeons). The rationale behind (2)

and (3) is that these specialties share similar average incomes while the next specialty (down

or up) in the ranking has a substantially different average income. Column (4) looks at the

baseline regression for dentists and adds a control for the ratio of dental hygienists to dentists

in the LMA-year to proxy for the increased specialization of dentists and the potential resulting

increase in their operating scale.

Table D.6 looks at potential entry effects for physicians, dentists and real estate agents. We

denote by E0/E the employment share of outcome occupation o (e.g. physicians) in a given

year and LMA. Columns (1), (3), and (5) use Eo/E as the dependent variable in our otherwise

identical baseline IV regression. The coefficient on physicians, 0.028, implies that a 1 point

increase in α−1
−o increases the share of doctors by 2.8 percentage points. In columns (2), (4)

and (6) we include this variable as a control to our baseline inequality spillover IV regression.

The coefficient of interest for all three occupations only change marginally but we lose a bit of

precision for real estate agents (the p-value is still lower than 0.11).
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Table D.5: Robustness Checks for Physicians and Dentists

Physicians Dentists

Age 35+ No Recent Move Specialty Specialization
Controls Control

α−1
−o 3.07 3.32 2.01 2.13

(1.37) (1.38) (0.72) (0.87)
Ln(Avg. Income) -0.11 -0.05 -0.49 0.02

(0.22) (0.22) (0.09) (0.14)
Ln(Population) 0.03 0.02 0.00 0.08

(0.10) (0.12) (0.04) (0.07)
Sh. neurosurgeons -1.43

(5.14)
Sh. high earning specialties 3.19

(1.20)
Sh. low earning specialties 0.11

(0.47)
Sh. unequal earning specialties 2.12

(3.82)
# hygienists / # dentists 0.04

(0.03)

N 200 200 200 200
F-Statistic 12.26 12.62 11.03 13.75

Notes: The table contains robustness checks on the baseline IV estimates. The first three columns are for physicians, and the last
column is for dentists. Column (1) restricts the sample of physicians to those aged 35 or older. Column (2) restricts the sample of
physicians to those who have not recently moved (within the past 5 years). Column (3) uses the baseline sample of physicians but
adds four controls for specialties of physicians (see text for details). Column (4) (dentists) controls for the ratio of the number of
hygienists to the number of dentists in the area, as a measure of task specialization

Table D.6: Controlling and Testing for Entry Effects

Physicians Dentists Real Estate Agents

Dependent Variable: Eo
E

α−1
o

Eo
E

α−1
o

Eo
E

α−1
o

α−1
−o 0.028 2.11 0.003 2.44 0.116 1.61

(0.013) (0.66) (0.002) (0.94) (0.043) (0.99)

Ln(Avg. Income) -0.001 -0.47 -0.001 -0.03 -0.002 -0.01
(0.002) (0.12) (0.000) (0.15) (0.008) (0.09)

Ln(Pop.) -0.001 0.04 0.000 0.09 -0.002 0.03
(0.001) (0.04) (0.000) (0.08) (0.003) (0.03)

Eo
E

6.52 -62.78 0.83
(11.41) (49.24) (4.75)

N 200 200 200 200 200 200
F-Statistic 13.21 14.22 13.36 12.96 7.124 6.285

Notes: Eo is the number of people working in outcome occupation o (e.g. physicians) in a given year and LMA. E is the total
employed population in the same year and LMA. When Eo/E is included as an independent variable, its purpose is to check that
inequality spillovers are not driven by entry. When Eo/E is the outcome variable, we are testing whether the instrument-induced
variation in local inequality causes entry. All results are IV estimates with the same specification described for our baseline results
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Table D.7: Controlling for the occupational share in the top 10%

Main Occupations

Real Estate
Physicians Dentists Agents

α−1
−o 2.27 2.27 1.70

(0.63) (0.93) (0.67)
Outcome Occupation Region-Specific Percentile 0.43 0.67 -0.08

(0.61) (0.55) (1.02)
Ln(Avg. Income) -0.47 -0.03 -0.01

(0.12) (0.14) (0.09)
Ln(Population) 0.03 0.07 0.02

(0.04) (0.08) (0.03)

N 200 200 200
F-Statistic 12.78 13.33 6.15

Placebo Occupations

Financial Managers
Managers Excl. Real Estate Engineers

α−1
−o 0.62 -0.03 -0.10

(0.78) (0.15) (0.30)
Outcome Occupation Region-Specific Percentile 4.50 -0.11 -0.23

(1.23) (0.67) (0.41)
Ln(Avg. Income) 0.17 0.06 -0.02

(0.11) (0.03) (0.05)
Ln(Population) -0.10 0.03 0.05

(0.05) (0.02) (0.02)

N 200 200 200
F-Statistic 12.64 16.15 28.91

Notes: IV regressions for selected occupations with and addition control for “Outcome Occupation Region-Specific Percentile”which
is the fraction of workers in the outcome occupation whose income is in the top 10% of the overall LMA-year income distribution.
This fraction will be greater than 10% when the outcome occupation is disproportionately high income (such as physicians)

Table D.8: Using 10% of doctors for dependent variable

50 LMAs (Baseline) 30 LMAs

(1) (2) (3) (4)

α−1
−o 1.03 1.00 1.24 1.23

(0.55) (0.64) (0.58) (0.64)
Ln(Avg. Income) 0.01 -0.01

(0.12) (0.12)
Ln(Population) -0.01 -0.01

(0.04) (0.05)

N 200 200 100 100
F Statistic 13.36 13.11 14.61 12.63

Notes: This table shows OLS and IV regression results for physicians using a different approach to calculating physician income
inequality. Rather than taking all physicians with income above the LMAs general 90th income percentile, we take all physicians
above the physician-specific LMA 90th percentile income. Due to physicians high average earnings, this method results in calculating
income inequality using far fewer doctors. N is the number of observations rounded to the nearest integer divisible by 50 as required
by disclosure rules.
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Table D.9: Robustness to Cutoffs

Panel (a): Physicians

Top 5 pct. 70 LMAs 30 LMAs Using 13 Occs Using 7 Occs

α−1
−o 2.31 2.16 1.74 2.28 2.28

(0.95) (0.87) (0.51) (0.64) (1.37)
Ln(Average Income) -0.60 -0.49 -0.40 -0.47 -0.48

(0.19) (0.10) (0.13) (0.12) (0.14)
Ln(Population) 0.07 0.04 0.02 0.03 0.04

(0.07) (0.04) (0.03) (0.04) (0.06)

N 200 300 100 200 200
F Statistic 5.32 9.37 12.34 11.17 1.89

Panel (b): Dentists

Top 5 pct. 70 LMAs 30 LMAs Using 13 Occs Using 7 Occs

α−1
−o 1.33 2.15 2.32 2.27 2.95

(0.83) (0.98) (1.14) (0.86) (1.42)
Ln(Average Income) -0.18 -0.08 0.03 0.01 -0.07

(0.21) (0.13) (0.15) (0.13) (0.15)
Ln(Population) 0.07 0.03 0.09 0.08 0.10

(0.08) (0.07) (0.10) (0.07) (0.10)

N 200 300 100 200 200
F Statistic 8.72 10.46 9.16 13.14 4.46

Panel (c): Real Estate Agents

Top 5 pct. 70 LMAs 30 LMAs Using 13 Occs Using 7 Occs

α−1
−o 0.64 1.49 1.22 1.32 2.43

(0.44) (0.64) (0.55) (0.59) (1.15)
Ln(Average Income) 0.09 0.03 0.02 0.04 -0.08

(0.12) (0.08) (0.08) (0.08) (0.14)
Ln(Population) 0.00 0.02 0.02 0.02 0.03

(0.03) (0.03) (0.04) (0.03) (0.05)

N 200 300 100 200 200
F Statistic 18.37 7.96 5.63 8.22 4.58

Notes: This table shows the IV regressions for physicians (Panel (a)), dentists (Panel (b)), and real estate agents (Panel (c)) for
5 different specifications. Column (1) uses the top 5% (instead of 10%) of the income distribution (for the dependent variable,
the independent variable, and the IV). Columns (2) and (3) use 70 and 30 LMAs respectively, instead of 50. Columns (4) and
(5) construct the instrument differently: rather than finding the top 10 occupations in each LMA in 1980 then taking the union,
column (4) uses the top 13 before taking the union while column (5) uses the top 7 before taking the union. N is the number of
observations rounded to the nearest integer divisible by 50 as required by disclosure rules.

Table D.10: Instrument Occupations with Largest Rotemberg Weights

Occupation Weights

Financial service sales occupations 0.35
Financial managers 0.22
Airplane pilots and navigators 0.21
Other financial specialists 0.16
Sales occupations and sales representatives 0.10
Production supervisors or foremen 0.09
Lawyers and judges 0.07
Driver/sales workers and truck Drivers 0.06

Occupation Weights

Geologists 0.06
Accountants and auditors 0.06
Primary/Secondary School Teachers 0.05
Economists, market and survey researchers -0.05
Office supervisors -0.05
Computer systems analysts and computer scientists -0.05
Managers, Excl. Real Estate -0.07
Engineers -0.13

Notes: Occupations with the sixteen largest Rotemberg weights in absolute value in the instrument for Physician regressions.
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Table D.11: Physician regressions: excluding occupations with the highest Rotemberg weights

Outcome Occupation: Physicians

Excl. from Instrument: Financial Other financial Engineers Airplane pilots Financial service
Managers Specialists and navigators sales occupations

α−1
−o 2.57 2.39 2.36 2.64 2.54

(0.80) (0.73) (0.60) (0.84) (0.92)
Ln(Average Income) -0.50 -0.48 -0.47 -0.50 -0.49

(0.14) (0.13) (0.13) (0.14) (0.13)
Ln(Population) 0.04 0.03 0.03 0.04 0.04

(0.04) (0.04) (0.04) (0.04) (0.05)

N 200 200 200 200 200
F Statistic 9.75 12.66 15.45 12.47 8.57

Notes: This table shows the baseline IV regressions for physicians when we in turn exclude the 5 occupations with the highest
Rotemberg weights from the instrument (Rotemberg weights are shown in Table D.10). The column heading denotes which
occupation is excluded from the instrument set.

While we follow Goldsmith-Pinkham et al. (2020) and assume that identification in our ex-

ercise comes from the exogeneity of the shares (the occupation weights), an alternative identifi-

cation strategy in shift-share instruments relies on the exogeneity of the shifts (here nationwide

occupational inequality). In that case, Adão et al. (2019) emphasize that correlated errors for

(in our case) LMAs with similar occupational compositions can lead researchers to reject the

null too often, and suggest a formula for standard errors that take this issue into account. In

Table D.12, we report their standard errors for our three focal occupations and our three main

placebo occupations. For our focal occupations, standards errors only increase by a bit, and

the spillover coefficients remain significant (the p-value for real estate agents with controls is

5.1%). Table D.12 also reports the confidence intervals from Lee et al. (2023)which are valid

under weak instruments, shown in curly brackets.

E Calibration Appendix
This appendix provides a detailed account of the calibration exercise in Section 6.

E.1 Data

Disclosure restrictions allow us to export 50 bins from each of four distributions in New York

State: physicians and consumers (non-physicians) for 1980 and 2012. Each bin represents the

average log income within 2 percentiles (in common $2000 using the CPI). The underlying

sample is the same as used for the regression. The consumer data has a rather long left tail and

we drop the bottom 10 per cent (those below $7, 080 and $8, 791 in $2000, for 1980 and 2012,

respectively). We fit a kernel to the bottom 90% of each distribution, and impose a Pareto

distribution on the top 10, where α−1 is estimated using the top of the income distribution.

We then choose the scale parameter of the Pareto distribution to ensure ensure a continuous

CDF.51 Panels (b) and (d) in Figure E.1 show histograms drawn from the fitted kernel, with the

51Our procedure does not require the CDF to be differentiable in the first point of the Pareto distribution,
though due to the good fit of a Pareto distribution in the top it is close to. We confirm that applying the
censoring procedure on data drawn from our CDF recreates binned observations that are indistinguishable from
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Table D.12: Alternative Inference Approaches for IV Estimator

Main Occupations

Physicians Dentists Real Estate Agents

α−1
−o 1.54 2.29 2.29 2.27 1.69 1.71

(0.74) (0.63) (0.71) (0.93) (0.62) (0.65)
[0.75] [0.98] [0.74] [0.84] [0.67] [0.87]

{0.28, 3.30} {1.23, 3.72} {1.03, 3.70} {0.71, 4.47} {0.65, 2.92} {0.64, 3.23}
Ln(Avg. Income) -0.47 0.00 -0.01

(0.13) (0.14) (0.09)
Ln(Population) 0.03 0.08 0.02

(0.04) (0.08) (0.03)

N 200 200 200 200 200 200
F-Statistic 14.60 13.21 23.63 13.36 12.72 7.12

Placebo Occupations

Financial Managers Managers Engineers

α−1
−o 1.12 0.77 0.05 -0.02 -0.13 -0.09

(0.97) (0.92) (0.12) (0.15) (0.26) (0.30)
[2.34] [2.03] [0.17] [0.15] [0.51] [0.43]

{-0.77, 2.83} {-1.47, 2.29} {-0.17, 0.26} {-0.31, 0.24} {-0.60, 0.34} {-0.63, 0.45}
Ln(Avg. Income) 0.29 0.06 -0.02

(0.16) (0.03) (0.05)
Ln(Population) -0.16 0.03 0.05

(0.07) (0.01) (0.02)

N 200 200 200 200 200 200
F-Statistic 19.92 11.22 22.15 16.49 23.97 27.91

Notes: IV regressions for selected occupations, with additional inference approaches. The first column for each outcome occupation
is the IV regression without population and average income controls. The second column adds these controls. The standard errors
in parentheses are from standard cluster-robust inference. The standard errors in squared brackets are Adão et al. (2019) standard
errors. The curly brackets contain the 95% confidence bounds from Lee et al (2023).

lightly shaded part representing the 10% of observations not included. The figure also shows

histograms drawn from the kernels of the doctors. These underlying data is bimodal reflecting

a sizable mass of doctors who are still in their medical residencies. Given that wages for medical

residents are not driven by consumers’ demand for physician skill (Chandra, Khullar, Wilensky,

2014) we exclude them from the analysis, by dropping observations with values lower than the

90th percentile of doctors aged 35 and younger ($52, 052 and $56, 387 in $2000, respectively).

As can be seen from the histograms this is practically equivalent to only including observations

after the first “peak” of the distributions. For the analysis we scale all income by the lowest

value of consumers’ income in 1980, though this figure is prior to scaling.

E.2 Calibration

We calibrate our model for exogenously given λ and ε as described in the main text. Though

the underlying ability distribution of potential doctors is given by Fz(z), we can only calibrate

the conditional distribution for active doctors, F̂z(z). We normalize the lowest active doctor

to have ability 1. We parameterize this distribution using 12 points along the distribution

and interpolating between them.52 With the tail value αz and β this gives us 14 parameters

the actual data (not shown).
52Formally, we consider 12 points equally spaced along the CDF of active doctors and calibrate the underlying

values of z at each of these points. All other points are linearly interpolated over {ln(z), ln(1 − CDF )} which
is linear for a standard Pareto. The top 10 is parameterized using a Pareto distribution with tail αz.
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Figure E.1: Histogram drawn from the CDFs of consumers and doctors
(a) Doctors 1980 (b) Consumers 1980

(c) Doctors 2012 (d) Consumers 2012

Notes: Histograms are in $2000 dollars and are drawn from the best fitting kernel (with a Pareto tail) on all 50 bins for each
population. Lightly shaded areas are observations excluded from the analysis. The cutoff represent the lowest value included. For
consumers it is based on bottom 10% percent. For doctors it is based on the 90th percentile of doctors aged 35 and younger.

to calibrate for 2012. We minimize the squared deviation of log wages between the empirical

kernel and the predicted wage distribution from the model. This gives us the parameters in

Table 8. The calibrated F̂z(z) is shown in Appendix Figure E.2.a. For this figure we also ask

the following question: By how much should the ability distribution have changed between

1980 and 2012 to exactly fit the wage distribution in both 1980 and 2012, holding the other

parameters, λ, β, and ε constant. The result is shown in the same panel. For the top 70% the

distribution shows a clear shift to the right, as well as a higher α−1
z in 2012. This increase in

ability inequality is commensurable with the change in α−1 for the consumers. Panel (b) shows

the same figure in a Pareto plot where the Pareto distribution would imply a straight line.

The measure of α−1.Throughout most of the paper we calculate α−1 for an occupation of

interest o based on the observations of this occupation in the top of the 10% of the general

population. In the following we show how α−1 and in particular the change in α−1 between

1980 and 2012 depends on the size of the sample chosen. This is analogous to the analysis on

the empirical distribution of Appendix Figure B.1, where here we utilize the model-predicted

distribution. For reference, slightly more than 80% of (non-resident) doctors are in the top 10%

of the overall distribution in 2012, and the difference at this cutoff is 0.193. For 10% of the

doctors it is 0.215. These numbers deliver the spillover coefficients of the main text.

Just like for the empirical distribution, the estimate of α−1 is somewhat sensitive to the

cutoff, but the difference between the two—the identification needed for the analysis—is re-
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Figure E.2: Calibrated doctor ability distribution
(a) CDF (b) Pareto plot

Notes: Panel (a) shows the calibrated ability distribution of the doctors. The 2012 values are used in the analysis in Section 6.
The 1980 values are calibrated analogously except the β value is kept constant at the 2012 value. Panel (b) shows the same two
figures in a Pareto plot (ln(z) against ln(1− CDF ))

Figure E.3: Estimated α−1 for doctors for various cutoffs - model predicted distribution

Notes: Calculated α−1 on different percentiles of the doctors’ distribution (with increasing fraction towards the right) for both
1980 and 2012. The numbers give the difference between 1980 and 2012 at selected samples of doctors used.

markably constant.

Welfare and spillovers.For the analyses behind Table 9, we consider two different scenarios,

both based on the same distribution of spillover occupations in 2012, calibrated to fit the doctors’

distribution in that year. For the spillover exercise, we consider the model-predicted change to

the spillover wages underlying Figure 5. For the counter-factual mean shift we calculate the

mean of log income for both 1980 and 2012, and we shift the 2012 distribution down by this

mean, preserving the shape. For the exercise in Table 9 we calculate the various inequality

measures in the table for 2012 and the two 1980 distributions and consider differences.

For the exercise comparing EV and income change in Figure 6 we consider only the spillover

scenario and compare the income change deflated by the same CPI to the EV calculated based

on equation 18. We then plot the difference between EV and income change, both between

1980 and 2012.

Appendix Figure E.4 combines the two analyses, by again considering the two scenarios

(the spillovers and the mean (log) shift) and compares the EV of the full distribution. For all
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consumers we rank them in 1980 and calculate the EV required to get them to the utility of the

equivalent percentile of consumers for each of the two scenarios in 2012 (based on equation 18).

For all spillover occupations, we calculate the EV required to get them to the same percentile of

the spillover occupation in 2012 (equivalent to the income increase due to the utility function).

We then take the combined distribution in 1980 and for each percentile we calculate the average

EV within that percentile. For the bottom 80% that is only consumers, but for the top 20%

that combines both consumers and the spillover occupations.

For lower-income consumers, the mean-shift scenario implies higher increases in medical

service costs, implying that they benefit from the spillover scenario. The reverse is true for

higher-income consumers, who pay higher prices with spillovers. However, because spillover

occupations are concentrated at the top of the income distribution, most consumers use services

provided by those who earn more than themselves. Consequently, for the highest earners (top

1%), the spillover scenario features higher welfare gains than the mean-shift scenario, as shown

more clearly in Panel (b) which shows the difference between the two.53

Figure E.4: Differences in welfare for full income distribution (with and without spillovers)
(a) Welfare differences - spillovers and

counterfactual
(b) Difference between spillovers and

counterfactual

Notes: The Figure considers the full income distribution (consumers plus spillover occupations) and shows the EV welfare
measure. Two scenarios are considered: the ‘Spillovers’ scenario from the baseline model and a counterfactual scenario of the
same (log) mean shift of the spillover occupations. Panel (b) shows the difference between the two.
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53Given the fatter Pareto tail for the consumers than for the spillover occupations, asymptotically consumers
buy the services from those who make less than themselves and the two curves cross again. For these parameters
that happens well within the top 0.1%.
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